REPUBLIQUE DU CAMEROUN Paix-Travail-Patrie

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

COMMISSION NATIONALE D'ORGANISATION DE L'EXAMEN NATIONAL DU DIPLOME SUPERIEUR D'ETUDES PROFESSIONNELLES (DSEP)

REPUBLIC OF CAMEROON

Peace-Work-Fatherland

MINISTRY OF HIGHER EDUCATION

NATIONAL COMMISSION FOR THE ORGANIZATION OF DSEP EXAM

Examen National du Diplôme Supérieur d'Etudes Professionnelles juillet 2009

Filière/Spécialité/C	ption :	Télécommunications et Réseaux (TR)
----------------------	---------	---------------------------------	-----

Epreuve : Physique Générale

Durée: 3 heures

L'épreuve comporte deux parties : une partie électromagnétisme et une partie optique Les calculatrices scientifiques sont autorisées

PARTIE 1: ELECTROMAGNETISME

I - CONNAISSANCE DU COURS 4,5pts

1- En partant des propriétés fondamentales du champ électrostatique et du champ magnétique, établir les équations de MAXWELL de l'électrostatique et de la magnétostatique. 1pt

2- On considère les équations de MAXWELL dans le vide en présence de charges libre de densité p et

de courant de densité j . En déduire :

a- l'équation de conservation de la charge 0,5pt

b- la relation entre E , A et V 0,5pt

c- la relation entre B et A 0,5pt

d- montrer que A et V ne sont pas uniques. 1pt

3- la condition de jauge de LORENTZ étant satisfaite, établir les équations différentielles satisfaites par

II - EXERCICES 3,5pts

1- Une onde électromagnétique plane (E , B) sinusoïdale de pulsation ω se propage dans le vide. Les axes de référence cartésiens Oxyz sont tels que l'onde se propage suivant l'axe des x dans le

sens des x positifs et que les composante de \rightarrow sont : [0, Eo Cos ($\omega t - kx$), E $_{o}$ Sin ($\omega t - kx$)].

a- cette onde est elle polarisée ? si oui de quelle manière ? 1pt

b- déterminer l'induction magnétique associée à E . 1pt

c- calculer l'intensité de cette onde. 1,5pt

III - PROBLEME. 6pts

I- Une onde électromagnétique de champ électrique \overrightarrow{E} = Eoexp [i (ωt -kz)] \overrightarrow{e} x et de champ

magnétique $B = Boexp [i (\omega t - kz)]$ e y est étudiée dans un plasma. Ce plasma est un gaz ionisé constitué d'électrons de masse m, de charge –e, au nombre N par unité de volume et d'ions positifs pratiquement immobiles. La densité volumique de charge totale ρ y est nulle. On considère que les constantes diélectrique et magnétique sont celles du vide $(\epsilon o, \mu o)$.

On néglige l'action du champ magnétique B de l'onde. Déterminer le vecteur densité de courant

J du aux électrons

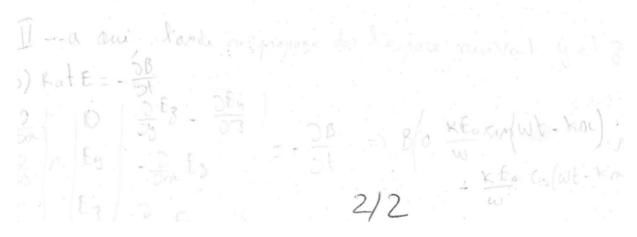
Fichier téléchargé gratuitement sur http://www.mongosukulu.com/

1- Etablir la relation de dispersion entre ω et k au moyen des équations de MAXWELL FARADAY et de MAXWELL- AMPERE. On rappelle que l'onde se propage suivant

$$\overrightarrow{e}_{z}$$
. On posera 1pt
$$\omega_{p}^{2} = \frac{Ne^{2}}{m\varepsilon_{0}}$$

- 2- On suppose ω>ω_p et on adopte les notations réelles des champs E et B
 - a- Calculer le vecteur de POYNTING en fonction de ω et k. 1pt
 - b- Montrer que la densité totale d'énergie électromagnétique U est donnée par la relation

$$U = \epsilon_0 \frac{E_0^2}{2} \cdot \frac{\omega_p^2}{\omega^2} + \epsilon_0 E_0^2 (1 - \frac{\omega_p^2}{\omega^2}) \cos^2(\omega t - kz)$$
 1pt


- c- Vérifier la conservation de l'énergie électromagnétique 1pt
- d- Calculer les valeurs moyennes temporelles S et U de S et de U. 1pt
- e- Montrer que la vitesse de groupe de l'onde est égale au rapport $\frac{\overline{S}}{U}$ 1pt

PARTIE II : OPTIOUE 6pts

EXERCICE I : un bassin de profondeur h = 1m est totalement rempli d'eau, d'indice n = 4/3. L'indice de l'air est pris égal à 1. Au fond du bassin est placée une source ponctuelle émettant de la lumière dans toutes les directions. Quel est le rayon du disque lumineux qui se forme à la surface de l'eau ? 2pts

EXERCICE 2: Le plan xoy sépare les milieux transparents (1) et (2) (diélectriques, non magnétiques et non absorbants) d'indice n_1 et n_2 . Une onde lumineuse plane arrive dans le milieu (1) sous une incidence normale sur xoy. Soient r et t les coefficients de réflexion et de transmission de l'amplitude du champ électrique sur le plan xoy

- 1- Ecrire la condition de continuité des champs E et H à la surface de séparation et leur projection sur les axes ox et oy 2pts
- 2- Calculer r et t en fonction de n₁ et n₂
- 3- Calculer les facteur R et T de réflexion et de transmission des flux d'énergie en fonction de n₁ et n₂ 1pt

