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Part I

Finance





1 Stable distributions in finance

Szymon Borak, Wolfgang Härdle, Rafa l Weron

1.1 Introduction

Stable laws – also called α-stable or Levy-stable – are a rich family of probabil-
ity distributions that allow skewness and heavy tails and have many interesting
mathematical properties. They appear in the context of the Generalized Cen-
tral Limit Theorem which states that the only possible non-trivial limit of
normalized sums of independent identically distributed variables is α-stable.
The Standard Central Limit Theorem states that the limit of normalized sums
of independent identically distributed terms with finite variance is Gaussian
(α-stable with α = 2).

It is often argued that financial asset returns are the cumulative outcome of
a vast number of pieces of information and individual decisions arriving almost
continuously in time (McCulloch, 1996; Rachev and Mittnik, 2000). Hence, it
is natural to consider stable distributions as approximations. The Gaussian
law is by far the most well known and analytically tractable stable distribution
and for these and practical reasons it has been routinely postulated to govern
asset returns. However, financial asset returns are usually much more leptokur-
tic, i.e. have much heavier tails. This leads to considering the non-Gaussian
(α < 2) stable laws, as first postulated by Benoit Mandelbrot in the early 1960s
(Mandelbrot, 1997).

Apart from empirical findings, in some cases there are solid theoretical reasons
for expecting a non-Gaussian α-stable model. For example, emission of particles
from a point source of radiation yields the Cauchy distribution (α = 1), hitting
times for Brownian motion yield the Levy distribution (α = 0.5, β = 1), the
gravitational field of stars yields the Holtsmark distribution (α = 1.5), for
a review see Janicki and Weron (1994) or Uchaikin and Zolotarev (1999).
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Dependence on alpha 
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Figure 1.1: A semilog plot of symmetric (β = µ = 0) α-stable probability
density functions for α = 2 (thin black), 1.8 (red), 1.5 (thin, dashed
blue) and 1 (dashed green). The Gaussian (α = 2) density forms
a parabola and is the only α-stable density with exponential tails.

STFstab01.xpl

1.2 α-stable distributions

Stable laws were introduced by Paul Levy during his investigations of the be-
havior of sums of independent random variables in the early 1920s (Levy, 1925).
A sum of two independent random variables having an α-stable distribution
with index α is again α-stable with the same index α. This invariance property
does not hold for different α’s, i.e. a sum of two independent stable random
variables with different α’s is not α-stable. However, it is fulfilled for a more
general class of infinitely divisible distributions, which are the limiting laws for
sums of independent (but not identically distributed) variables.

http://www.quantlet.org/mdstat/codes/stf/STFstab01.html
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Dependence on beta 
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Figure 1.2: α-stable probability density functions for α = 1.2 and β = 0 (thin
black), 0.5 (red), 0.8 (thin, dashed blue) and 1 (dashed green).

STFstab02.xpl

The α-stable distribution requires four parameters for complete description:
an index of stability α ∈ (0, 2] also called the tail index, tail exponent or
characteristic exponent, a skewness parameter β ∈ [−1, 1], a scale parameter
σ > 0 and a location parameter µ ∈ R. The tail exponent α determines the
rate at which the tails of the distribution taper off, see Figure 1.1. When α = 2,
a Gaussian distribution results. When α < 2, the variance is infinite. When
α > 1, the mean of the distribution exists and is equal to µ. In general, the
pth moment of a stable random variable is finite if and only if p < α. When
the skewness parameter β is positive, the distribution is skewed to the right,
i.e. the right tail is thicker, see Figure 1.2. When it is negative, it is skewed to
the left. When β = 0, the distribution is symmetric about µ. As α approaches
2, β loses its effect and the distribution approaches the Gaussian distribution

http://www.quantlet.org/mdstat/codes/stf/STFstab02.html
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Gaussian, Cauchy and Levy distributions
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Figure 1.3: Closed form formulas for densities are known only for three distri-
butions: Gaussian (α = 2; thin black), Cauchy (α = 1; red) and
Levy (α = 0.5, β = 1; thin, dashed blue). The latter is a totally
skewed distribution, i.e. its support is R+. In general, for α < 1
and β = 1 (−1) the distribution is totally skewed to the right (left).

STFstab03.xpl

regardless of β. The last two parameters, σ and µ, are the usual scale and
location parameters, i.e. σ determines the width and µ the shift of the mode
(the peak) of the distribution.

1.2.1 Characteristic function representation

Due to the lack of closed form formulas for densities for all but three distri-
butions (see Figure 1.3), the α-stable law can be most conveniently described
by its characteristic function φ(t) – the inverse Fourier transform of the prob-

http://www.quantlet.org/mdstat/codes/stf/STFstab03.html
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S parameterization
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S0 parameterization
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Figure 1.4: Comparison of S and S0 parameterizations: α-stable probability
density functions for β = 0.5 and α = 0.5 (thin black), 0.75 (red),
1 (thin, dashed blue), 1.25 (dashed green) and 1.5 (thin cyan).
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ability density function. However, there are multiple parameterizations for
α-stable laws and much confusion has been caused by these different represen-
tations, see Figure 1.4. The variety of formulas is caused by a combination
of historical evolution and the numerous problems that have been analyzed
using specialized forms of the stable distributions. The most popular param-
eterization of the characteristic function of X ∼ Sα(σ, β, µ), i.e. an α-stable
random variable with parameters α, σ, β and µ, is given by (Samorodnitsky
and Taqqu, 1994; Weron, 1996):

log φ(t) =


−σα|t|α{1− iβsign(t) tan πα

2 }+ iµt, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π log |t|}+ iµt, α = 1.

(1.1)

http://www.quantlet.org/mdstat/codes/stf/STFstab04.html
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For numerical purposes, it is often useful (Fofack and Nolan, 1999) to use
a different parameterization:

log φ0(t) =


−σα|t|α{1 + iβsign(t) tan πα

2 [(σ|t|)1−α − 1]}+ iµ0t, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π log(σ|t|)}+ iµ0t, α = 1.

(1.2)

The S0
α(σ, β, µ0) parameterization is a variant of Zolotariev’s (M)-parameteri-

zation (Zolotarev, 1986), with the characteristic function and hence the den-
sity and the distribution function jointly continuous in all four parameters,
see Figure 1.4. In particular, percentiles and convergence to the power-law
tail vary in a continuous way as α and β vary. The location parameters of
the two representations are related by µ = µ0 − βσ tan πα

2 for α 6= 1 and
µ = µ0 − βσ 2

π log σ for α = 1.

The probability density function and the cumulative distribution function of α-
stable random variables can be easily calculated in XploRe. Quantlets pdfstab
and cdfstab compute the pdf and the cdf, respectively, for a vector of values x
with given parameters alpha, sigma, beta, and mu, and an accuracy parameter
n. Both quantlets utilize Nolan’s (1997) integral formulas for the density and
the cumulative distribution function. The larger the value of n (default n=2000)
the more accurate and time consuming (!) the numerical integration.

Special cases can be computed directly from the explicit form of the pdf or
the cdf. Quantlets pdfcauch and pdflevy calculate values of the probability
density functions, whereas quantlets cdfcauch and cdflevy calculate values of
the cumulative distribution functions for the Cauchy and Levy distributions,
respectively. x is the input array; sigma and mu are the scale and location
parameters of these distributions.

1.2.2 Simulation of α-stable variables

The complexity of the problem of simulating sequences of α-stable random
variables results from the fact that there are no analytic expressions for the
inverse F−1 of the cumulative distribution function. The first breakthrough
was made by Kanter (1975), who gave a direct method for simulating Sα(1, 1, 0)
random variables, for α < 1. It turned out that this method could be easily
adapted to the general case. Chambers, Mallows and Stuck (1976) were the
first to give the formulas.

http://www.xplore-stat.de/help/pdfstab.html
http://www.xplore-stat.de/help/cdfstab.html
http://www.xplore-stat.de/help/pdfcauch.html
http://www.xplore-stat.de/help/pdflevy.html
http://www.xplore-stat.de/help/cdfcauch.html
http://www.xplore-stat.de/help/cdflevy.html
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The algorithm for constructing a random variable X ∼ Sα(1, β, 0), in represen-
tation (1.1), is the following (Weron, 1996):

• generate a random variable V uniformly distributed on (−π2 ,
π
2 ) and an

independent exponential random variable W with mean 1;

• for α 6= 1 compute:

X = Sα,β×
sin{α(V +Bα,β)}
{cos(V )}1/α

×
[

cos{V − α(V +Bα,β)}
W

](1−α)/α

, (1.3)

where

Bα,β =
arctan(β tan πα

2 )
α

,

Sα,β =
{

1 + β2 tan2
(πα

2

)}1/(2α)

;

• for α = 1 compute:

X =
2
π

{(π
2

+ βV
)

tanV − β log
( π

2W cosV
π
2 + βV

)}
. (1.4)

Given the formulas for simulation of a standard α-stable random variable, we
can easily simulate a stable random variable for all admissible values of the
parameters α, σ, β and µ using the following property: if X ∼ Sα(1, β, 0) then

Y =


σX + µ, α 6= 1,

σX + 2
πβσ log σ + µ, α = 1,

(1.5)

is Sα(σ, β, µ). Although many other approaches have been presented in the
literature, this method is regarded as the fastest and the most accurate.

Quantlets rndstab and rndsstab use formulas (1.3)-(1.5) and provide pseudo
random variables of stable and symmetric stable distributions, respectively.
Parameters alpha and sigma in both quantlets and beta and mu in the first
one determine the parameters of the stable distribution.

http://www.xplore-stat.de/help/rndstab.html
http://www.xplore-stat.de/help/rndsstab.html
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1.2.3 Tail behavior

Levy (1925) has shown that when α < 2 the tails of α-stable distributions are
asymptotically equivalent to a Pareto law. Namely, if X ∼ Sα<2(1, β, 0) then
as x→∞:

P (X > x) = 1− F (x) → Cα(1 + β)x−α,
(1.6)

P (X < −x) = F (−x) → Cα(1− β)x−α,

where

Cα =
(

2
∫ ∞

0

x−α sinxdx
)−1

=
1
π

Γ(α) sin
πα

2
.

The convergence to a power-law tail varies for different α’s (Mandelbrot, 1997,
Chapter 14) and, as can be seen in Figure 1.5, is slower for larger values of
the tail index. Moreover, the tails of α-stable distribution functions exhibit
a crossover from an approximate power decay with exponent α > 2 to the
true tail with exponent α. This phenomenon is more visible for large α’s
(Weron, 2001).

1.3 Estimation of parameters

The estimation of stable law parameters is in general severely hampered by the
lack of known closed–form density functions for all but a few members of the
stable family. Most of the conventional methods in mathematical statistics,
including the maximum likelihood estimation method, cannot be used directly
in this case, since these methods depend on an explicit form for the density.
However, there are numerical methods that have been found useful in practice
and are discussed in this section.

All presented methods work quite well assuming that the sample under con-
sideration is indeed α-stable. However, if the data comes from a different
distribution, these procedures may mislead more than the Hill and direct tail
estimation methods. Since there are no formal tests for assessing the α-stability
of a data set we suggest to first apply the ”visual inspection”or non-parametric
tests to see whether the empirical densities resemble those of α-stable laws.

Given a sample x1, ..., xn from Sα(σ, β, µ), in what follows, we will provide
estimates α̂, σ̂, β̂ and µ̂ of α, σ, β and µ, respectively.
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Figure 1.5: Right tails of symmetric α-stable distribution functions for α = 2
(thin black), 1.95 (red), 1.8 (thin, dashed blue) and 1.5 (dashed
green) on a double logarithmic paper. For α < 2 the tails form
straight lines with slope −α.

STFstab05.xpl

1.3.1 Tail exponent estimation

The simplest and most straightforward method of estimating the tail index is
to plot the right tail of the (empirical) cumulative distribution function (i.e.
1−F (x)) on a double logarithmic paper. The slope of the linear regression for
large values of x yields the estimate of the tail index α, through the relation
α = −slope.

This method is very sensitive to the sample size and the choice of the number of
observations used in the regression. Moreover, the slope around −3.7 may in-
dicate a non-α-stable power-law decay in the tails or the contrary – an α-stable

http://www.quantlet.org/mdstat/codes/stf/STFstab05.html
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Tails of stable laws for 10^6 samples 
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Figure 1.6: A double logarithmic plot of the right tail of an empirical symmetric
1.9-stable distribution function for sample size N = 106 (left panel)
and N = 104 (right panel). Thick red lines represent the linear
regression fit. Even the far tail estimate α̂ = 1.9309 is above the
true value of α. For the smaller sample, the obtained tail index
estimate (α̂ = 3.7320) is close to the initial power-law like decay of
the larger sample (α̂ = 3.7881).

STFstab06.xpl

distribution with α ≈ 1.9. To illustrate this run quantlet STFstab06. First sim-
ulate (using equation (1.3) and quantlet rndsstab) samples of size N = 104

and 106 of standard symmetric (β = µ = 0, σ = 1) α-stable distributed vari-
ables with α = 1.9. Next, plot the right tails of the empirical distribution
functions on a double logarithmic paper, see Figure 1.6.

The true tail behavior (1.6) is observed only for very large (also for very small,
i.e. the negative tail) observations, after a crossover from a temporary power-
like decay. Moreover, the obtained estimates still have a slight positive bias,
which suggests that perhaps even larger samples than 106 observations should
be used. In Figure 1.6 we used only the upper 0.15% of the records to estimate

http://www.quantlet.org/mdstat/codes/stf/STFstab06.html
http://www.xplore-stat.de/help/STFstab06.html
http://www.xplore-stat.de/help/rndsstab.html
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Figure 1.7: Plots of the Hill statistics α̂n,k vs. the maximum order statistic k
for 1.8-stable samples of size N = 104 (left panel) and N = 106

(middle and right panels). Red horizontal lines represent the true
value of α. For better exposition, the right panel is a magnification
of the middle panel for small k. A close estimate is obtained only
for k = 500, ..., 1300 (i.e. for k < 0.13% of sample size).

STFstab07.xpl

the true tail exponent. In general, the choice of the observations used in the
regression is subjective and can yield large estimation errors, a fact which is
often neglected in the literature.

A well known method for estimating the tail index that does not assume a
parametric form for the entire distribution function, but focuses only on the
tail behavior was proposed by Hill (1975). The Hill estimator is used to estimate
the tail index α, when the upper (or lower) tail of the distribution is of the
form: 1−F (x) = Cx−α. Like the log-log regression method, the Hill estimator
tends to overestimate the tail exponent of the stable distribution if α is close
to two and the sample size is not very large, see Figure 1.7. For a review of the
extreme value theory and the Hill estimator see Chapter 13 in Härdle, Klinke,
and Müller (2000) or Embrechts, Klüppelberg and Mikosch (1997).

http://www.quantlet.org/mdstat/codes/stf/STFstab07.html
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These examples clearly illustrate that the true tail behavior of α-stable laws is
visible only for extremely large data sets. In practice, this means that in order
to estimate α we must use high-frequency asset returns and restrict ourselves
to the most ”outlying” observations. Otherwise, inference of the tail index may
be strongly misleading and rejection of the α-stable regime unfounded.

1.3.2 Sample Quantiles Methods

Let xf be the f–th population quantile, so that Sα(σ, β, µ)(xf ) = f . Let x̂f
be the corresponding sample quantile, i.e. x̂f satisfies Fn(x̂f ) = f .

McCulloch (1986) analyzed stable law quantiles and provided consistent esti-
mators of all four stable parameters, however, with the restriction α ≥ 0.6.
Define

vα =
x0.95 − x0.05

x0.75 − x0.25
, (1.7)

which is independent of both σ and µ. Let v̂α be the corresponding sample
value. It is a consistent estimator of vα. Now, define

vβ =
x0.95 + x0.05 − 2x0.50

x0.95 − x0.05
, (1.8)

and let v̂β be the corresponding sample value. vβ is also independent of both
σ and µ. As a function of α and β it is strictly increasing in β for each α. The
statistic v̂β is a consistent estimator of vβ .

Statistics vα and vβ are functions of α and β. This relationship may be inverted
and the parameters α and β may be viewed as functions of vα and vβ

α = ψ1(vα, vβ), β = ψ2(vα, vβ). (1.9)

Substituting vα and vβ by their sample values and applying linear interpolation
between values found in tables provided by McCulloch (1986) yields estimators
α̂ and β̂.

Scale and location parameters, σ and µ, can be estimated in a similar way.
However, due to the discontinuity of the characteristic function for α = 1
and β 6= 0 in representation (1.1), this procedure is much more complicated.
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We refer the interested reader to the original work of McCulloch (1986). The
quantlet stabcull returns estimates of stable distribution parameters from
sample x using McCulloch’s method.

1.3.3 Sample Characteristic Function Methods

Given an i.i.d. random sample x1, ..., xn of size n, define the sample character-
istic function by

φ̂(t) =
1
n

n∑
j=1

eitxj . (1.10)

Since |φ̂(t)| is bounded by unity all moments of φ̂(t) are finite and, for any
fixed t, it is the sample average of i.i.d. random variables exp(itxj). Hence,
by the law of large numbers, φ̂(t) is a consistent estimator of the characteristic
function φ(t).

Press (1972) proposed a simple estimation method, called the method of mo-
ments, based on transformations of the characteristic function. From (1.1) we
have for all α

|φ(t)| = exp(−σα|t|α). (1.11)

Hence, − log |φ(t)| = σα|t|α. Now, assuming α 6= 1, choose two nonzero values
of t, say t1 6= t2. Then for k = 1, 2 we have

− log |φ(tk)| = σα|tk|α. (1.12)

Solving these two equations for α and σ, and substituting φ̂(t) for φ(t) yields

α̂ =
log log |φ̂(t1)|

log |φ̂(t2)|

log | t1t2 |
, (1.13)

http://www.xplore-stat.de/help/stabcull.html
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and

log σ̂ =
log |t1| log(− log |φ̂(t2)|)− log |t2| log(− log |φ̂(t1)|)

log | t1t2 |
. (1.14)

In order to estimate β and µ we have to apply a similar trick to ={log φ(t)}. The
estimators are consistent since they are based upon estimators of φ(t), ={φ(t)}
and <{φ(t)}, which are known to be consistent. However, convergence to the
population values depends on the choice of t1, ..., t4. The optimal selection of
these values is problematic and still is an open question.

The quantlet stabmom returns estimates of stable distribution parameters from
sample x using the method of moments. It uses a selection of points suggested
by Koutrouvelis (1980): t1 = 0.2, t2 = 0.8, t3 = 0.1, and t4 = 0.4.

Parameter estimates can be also obtained by minimizing some function of the
difference between the theoretical and sample characteristic functions. Koutrou-
velis (1980) presented a regression-type method which starts with an initial
estimate of the parameters and proceeds iteratively until some prespecified
convergence criterion is satisfied. Each iteration consists of two weighted re-
gression runs. The number of points to be used in these regressions depends on
the sample size and starting values of α. Typically no more than two or three
iterations are needed. The speed of the convergence, however, depends on the
initial estimates and the convergence criterion.

The regression method is based on the following observations concerning the
characteristic function φ(t). First, from (1.1) we can easily derive

log(− log |φ(t)|2) = log(2σα) + α log |t|. (1.15)

The real and imaginary parts of φ(t) are for α 6= 1 given by

<{φ(t)} = exp(−|σt|α) cos
[
µt+ |σt|αβsign(t) tan

πα

2

]
,

and

={φ(t)} = exp(−|σt|α) sin
[
µt+ |σt|αβsign(t) tan

πα

2

]
.

http://www.xplore-stat.de/help/stabmom.html
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The last two equations lead, apart from considerations of principal values, to

arctan
(
={φ(t)}
<{φ(t)}

)
= µt+ βσα tan

πα

2
sign(t)|t|α. (1.16)

Equation (1.15) depends only on α and σ and suggests that we estimate these
parameters by regressing y = log(− log |φn(t)|2) on w = log |t| in the model

yk = m+ αwk + εk, k = 1, 2, ...,K, (1.17)

where tk is an appropriate set of real numbers, m = log(2σα), and εk denotes
an error term. Koutrouvelis (1980) proposed to use tk = πk

25 , k = 1, 2, ...,K;
with K ranging between 9 and 134 for different estimates of α and sample sizes.

Once α̂ and σ̂ have been obtained and α and σ have been fixed at these values,
estimates of β and µ can be obtained using (1.16). Next, the regressions are
repeated with α̂, σ̂, β̂ and µ̂ as the initial parameters. The iterations continue
until a prespecified convergence criterion is satisfied.

Kogon and Williams (1998) eliminated this iteration procedure and simplified
the regression method. For initial estimation they applied McCulloch’s (1986)
method, worked with the continuous representation (1.2) of the characteristic
function instead of the classical one (1.1) and used a fixed set of only 10 equally
spaced frequency points tk. In terms of computational speed their method
compares favorably to the original method of Koutrouvelis (1980). It has
a significantly better performance near α = 1 and β 6= 0 due to the elimina-
tion of discontinuity of the characteristic function. However, it returns slightly
worse results for very small α.

The quantlet stabreg fits a stable distribution to sample x and returns param-
eter estimates. The string method determines the method used: method="k"
denotes the Koutrouvelis (1980) method with McCulloch’s (1986) initial param-
eter estimates (default), method="km" denotes the Koutrouvelis (1980) method
with initial parameter estimates obtained from the method of moments, and
method="kw" denotes the Kogon and Williams (1998) method. The last two op-
tional parameters are responsible for computation accuracy: epsilon (default
epsilon=0.00001) specifies the convergence criterion, whereas maxit (default
maxit=5) denotes the maximum number of iterations for both variants of the
Koutrouvelis (1980) method.

http://www.xplore-stat.de/help/stabreg.html
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1.4 Financial applications of α-stable laws

Distributional assumptions for financial processes have important theoretical
implications, given that financial decisions are commonly based on expected
returns and risk of alternative investment opportunities. Hence, solutions to
such problems like portfolio selection, option pricing, and risk management
depend crucially on distributional specifications.

Many techniques in modern finance rely heavily on the assumption that the
random variables under investigation follow a Gaussian distribution. However,
time series observed in finance – but also in other econometric applications –
often deviate from the Gaussian model, in that their marginal distributions are
heavy-tailed and, possibly, asymmetric. In such situations, the appropriateness
of the commonly adopted normal assumption is highly questionable.

It is often argued that financial asset returns are the cumulative outcome of
a vast number of pieces of information and individual decisions arriving almost
continuously in time. Hence, in the presence of heavy-tails it is natural to
assume that they are approximately governed by a stable non-Gaussian dis-
tribution. Other leptokurtic distributions, including Student’s t, Weibull and
hyperbolic, lack the attractive central limit property.

Stable distributions have been successfully fit to stock returns, excess bond
returns, foreign exchange rates, commodity price returns and real estate returns
(McCulloch, 1996; Rachev and Mittnik, 2000). In recent years, however, several
studies have found, what appears to be strong evidence against the stable model
(for a review see: McCulloch, 1997; Weron, 2001). These studies have estimated
the tail exponent directly from the tail observations and commonly have found
α that appears to be significantly greater than 2, well outside the stable domain.
Recall, however, that in Section 1.3.1 we have shown that estimating α only
from the tail observations may be strongly misleading and for samples of typical
size the rejection of the α-stable regime unfounded. Let us see ourselves how
well the stable law describes financial asset returns.

The quantlet STFstab08 fits the stable and Gaussian laws to the USD/GBP
exchange rate returns from the period January 2, 1990 – November 8, 2000
using the regression method of Koutrouvelis (1980). Next, it and compares
both fits through Anderson-Darling (see Stephens, 1974) and Kolmogorov test
statistics. The former may be treated as a weighted Kolmogorov statistics
which puts more weight to the differences in the tails of the distributions. The
obtained results, presented in Table 1.1, clearly show that the 1.71-stable law

http://www.xplore-stat.de/help/STFstab08.html
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Table 1.1: α-stable and Gaussian fits to the USD/GBP exchange rate returns
from the period January 2, 1990 – November 8, 2000.

Parameters α σ β µ

α-stable fit 1.7165 0.0033 -0.0986 0.0000
Gaussian fit 0.0059 0.0000

Test values Anderson-Darling Kolmogorov
α-stable fit 2.1209 0.9181
Gaussian fit 20.5433 3.1816

STFstab08.xpl

Table 1.2: α-stable and Gaussian fits to the Dow Jones Industrial Average
(DJIA) index from the period July 6, 1984 – May 17, 1996.

Parameters α σ β µ

α-stable fit 1.6723 0.0048 0.0999 0.0009
Gaussian fit 0.0102 0.0006

Test values Anderson-Darling Kolmogorov
α-stable fit 1.0624 0.8046
Gaussian fit +INF 4.9778

STFstab09.xpl

offers a much better fit to the data than the Gaussian.

The quantlet STFstab09 fits both distributions to the Dow Jones Industrial
Average (DJIA) index from the period July 6, 1984 – May 17, 1996. Recall,
that this period includes the biggest crash in stock market’s history – the Black
Monday of October 19, 1987. Clearly the 1.67-stable law offers a much better
fit to the DJIA returns, see Table 1.2. Its superiority, especially in the tails of
the distribution, is even better visible in Figure 1.8.

The quantlet STFstab10 fits both laws to the Deutsche Aktienindex (DAX)
index from the period January 2, 1995 – December 11, 2002. Like for two
previous data sets also here the α-stable law offers a much better fit, see Table

http://www.quantlet.org/mdstat/codes/stf/STFstab08.html
http://www.quantlet.org/mdstat/codes/stf/STFstab09.html
http://www.xplore-stat.de/help/STFstab09.html
http://www.xplore-stat.de/help/STFstab10.html
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Figure 1.8: 1.67-stable (cyan) and Gaussian (dashed red) fits to the DJIA re-
turns (black circles) empirical cumulative distribution function from
the period July 6, 1984 – May 17, 1996. Right panel is a magnifica-
tion of the left tail fit on a double logarithmic scale clearly showing
the superiority of the 1.67-stable law.

STFstab09.xpl

1.3. In all three cases the Gaussian distribution has to be rejected based on
the results of the two applied tests – the p-values are less than 10−4. Unfor-
tunately, the critical test values are not known for the α-stable law. However,
the Anderson-Darling test values are at least an order of magnitude smaller
and the Kolmogorov test values are a few times smaller than for the Gaussian
distribution suggesting a much better fit, especially in the tails.

Of course, nothing we have said demonstrates that any one of the above data
sets really has a stable distribution. Although we have shown in Section 1.3.1
that tail index estimates are not sufficient to reject stability, the converse is
also true: an estimate of α significantly less than 2 by no means rules out
a non-stable distribution with power-law tails with α > 2. Even though it
is relatively easy to reject normality (as we have shown above), alternative
leptokurtic distributions are very hard to tell apart.

http://www.quantlet.org/mdstat/codes/stf/STFstab09.html
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Table 1.3: α-stable and Gaussian fits to the the Deutsche Aktienindex (DAX)
index from the period January 2, 1995 – December 11, 2002.

Parameters α σ β µ

α-stable fit 1.6975 0.0088 -0.3255 -0.0003
Gaussian fit 0.0158 0.0003

Test values Anderson-Darling Kolmogorov
α-stable fit 1.9714 1.1625
Gaussian fit 16.5865 2.8499

STFstab10.xpl

Yet, the central limit property of stable laws, together with good description
of extreme events may justify their application to diverse problems in finance
including portfolio optimization, option pricing and – most noticeably – Value-
at-Risk type calculations, where the estimation of low quantiles in portfolio
return distributions is crucial (Khindarova, Rachev, and Schwartz, 2001).

http://www.quantlet.org/mdstat/codes/stf/STFstab10.html
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2 Tail dependence

Rafael Schmidt

Tail dependence describes the amount of dependence in the lower-left-quadrant
tail or upper-right-quadrant tail of a bivariate distribution. Multivariate dis-
tributions possessing tail dependence are able to incorporate dependencies of
extremal events. According to Hauksson et al. (2001), Resnick (2002), and
Embrechts et al. (2001) tail dependence plays an important role in extreme
value theory, finance, and insurance models. In particular in credit-portfolio
modelling tail-dependent distributions are of special practical interest, as de-
pendencies of large credit-default events can be modelled.

Here we introduce the tail-dependence concept and characterizing tail depen-
dence by the so-called tail-dependence coefficient and we embed this concept
into the general framework of copulae. In Section ??, the tail-dependence co-
efficient is calculated for several Archimedean copulae, elliptically contoured
distributions, and other copulae. Section ?? proposes two non-parametric esti-
mators for the tail-dependence coefficient based on the empirical copula. Fur-
ther we provide a suitable estimator for the tail-dependence coefficient within
the class of elliptically-contoured distributions. The last section presents em-
pirical results comparing the latter estimators.

2.1 Tail dependence and copulae

Tail-dependence definitions for multivariate random vectors are mostly related
to their bivariate marginal distribution functions. Loosely speaking, tail depen-
dence describes the limiting proportion of exceeding one margin over a certain
threshold given that the other margin has already exceeded that threshold. The
following approach from Joe (1997) represents one of many possible definitions
of tail dependence.

Let X = (X1, X2)> be a 2-dimensional random vector. We say that X is

http://www.mathematik.uni-ulm.de/~tiger/~
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Figure 2.1: λU (v) = P{X1 > F−1
1 (v) | X2 > F−1

2 (v)} for a bivariate normal
distribution with ρ = −0.8, −0.6, . . . , 0.6, 0.8. Note that λU = 0
for all ρ ∈ (−1, 1).

(bivariate) upper tail-dependent if

λU := lim
v→1−

λU (v) = lim
v→1−

P{X1 > F−1
1 (v) | X2 > F−1

2 (v) > 0}, (2.1)

in case the limit exists. F−1
1 , F−1

2 denote the generalized inverse distribu-
tion functions of X1, X2. Consequently, we say X = (X1, X2)> is upper tail-
independent if λU equals 0. Further, we call λU the upper tail-dependence
coefficient (TDC). See Schmidt and Stadtmüller (2002) for a generalization to
multivariate tail dependence. Similarly, we define the lower tail-dependence
coefficient by

λL := lim
v→0+

P{X1 ≤ F−1
1 (v) | X2 ≤ F−1

2 (v)}. (2.2)

We embed the tail-dependence concept within the copula theory. An n-dimen-
sional distribution function C : [0, 1]n → [0, 1] is called a copula if it has
one-dimensional margins which are uniformly distributed on the interval [0, 1].
Copulae are functions that join or ”couple” an n-dimensional distribution func-
tion F to its corresponding one-dimensional marginal-distribution functions
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Figure 2.2: λU (v) = P{X1 > F−1
1 (v) | X2 > F−1

2 (v)} for a bivariate t-
distribution with ρ = −0.8, −0.6, . . . , 0.6, 0.8. The exact formula
for λU > 0 is given in Section ??.

Fi, i = 1, . . . , n, in the following way:

F (x1, . . . , xn) = C{F1(x1), . . . , Fn(xn)}.

We refer the reader to the monographs of Nelsen (1999) or Joe (1997) for more
information on copulae.

The following representation shows that tail dependence is a copula property.
Thus many copula features transfer to the tail-dependence coefficient, for ex-
ample the invariance under strictly increasing transformations of the margins.

If X is a continuous bivariate random vector, then

λU = lim
v→1−

1− 2v + C(v, v)
1− v

, (2.3)

where C denotes the copula of X. Analogously, λL = limv→0+
C(v,v)
v holds for

the lower tail-dependence coefficient.
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2.2 Calculating the tail-dependence coefficient

2.2.1 Archimedean copulae

Referring to Härdle, Kleinow and Stahl (2002) Archimedean copulae are im-
plemented and investigated within the Value at Risk framework. Therefore
and because Archimedean copulae form an important class of copulae which
are easy to construct and have nice properties, we explore the tail-dependence
coefficient for this family of copulae. A bivariate Archimedean copula has the
form C(u, v) = φ[−1]φ(u) + φ(v) for some continuous, strictly decreasing, and
convex function φ : [0, 1] → [0,∞] such that φ(1) = 0 and the pseudo-inverse
function φ[−1] is defined by

φ[−1](t) =
{
φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) < t ≤ ∞.

We call φ strict if φ(0) =∞. In that case φ[−1] = φ−1. Regarding the existence
of tail dependence for Archimedean copulae we can show that:

1. Upper tail-dependence implies φ′(1) = 0
and λU = 2− limv→1−(φ[−1] ◦ 2φ)′(v),

2. φ′(1) < 0 implies upper tail-independence,

3. φ′(0) > −∞ or a non-strict φ implies lower tail-independence,

4. Lower tail-dependence implies φ′(0) = −∞, λL = limv→0+(φ−1 ◦ 2φ)′(v),
and a strict φ.

Table 2.1 lists various Archimedean copulae in the same ordering as in Table 2.1
in Härdle, Kleinow and Stahl (2002) or in Nelsen (1999) and the corresponding
upper and lower TDC.

The quantlet TailCoeffCopula derives the TDC for a large number of bivari-
ate copula-functions. The inputs of this quantlet are the type of copula and
the copula parameters. The type of copula is specified by an integer, between 1
and 34, listed in the following tables. For instance copula=1 - Pareto-Clayton,
copula=4 - Gumbel-Hougaard, and copula=5 - Frank. The result of the appli-
cation is assigned to the vector (lTDC,uTDC) and contains the lower and upper
TDC, respectively. We refer the reader to the VARCopula quantlet for related

http://www.xplore-stat.de/help/TailCoeffCopula.html
http://www.xplore-stat.de/help/VARCopula.html
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copula calculations.

(lTDC,uTDC) = TailCoeffCopula (copula,parameters)
Calculates the lower and upper tail-dependence coefficient for var-
ious copulae

2.2.2 Elliptically contoured distributions

In this section, we calculate the tail-dependence coefficient for elliptically con-
toured distributions (briefly: elliptical distributions). Well-known elliptical
distributions are the multivariate normal distribution, the multivariate t-distri-
bution, the multivariate logistic distribution, and the multivariate symmetric
generalized-hyperbolic distribution.

Elliptical distributions are defined as follows: Let X be an n-dimensional ran-
dom vector and Σ ∈ Rn×n be a symmetric positive semi-definite matrix. If
X − µ, for some µ ∈ R

n, possesses a characteristic function of the form
φX−µ(t) = Φ(t>Σt) for some function Φ : R+

0 → R, then X is said to be
elliptically distributed with parameters µ (location), Σ (dispersion), and Φ.
Let En(µ,Σ,Φ) denote the class of elliptically contoured distributions with the
latter parameters. We call Φ the characteristic generator.
The density function, if existent, of an elliptically contoured distribution has
the following form:

f(x) = |Σ|−1/2g(x− µ)>Σ−1(x− µ), x ∈ Rn, (2.4)

for some function g : R+
0 → R

+
0 , which we call the density generator. Observe

that the name ”elliptically contoured” distribution is related to the elliptical
contours of the latter density. For a more detailed treatment of elliptical distri-
butions see Fang, Kotz, and Ng (1990), Cambanis, Huang, and Simon (1981).

Bingham and Kiesel (2002) and Bingham, Kiesel, and Schmidt (2002) propose a
semi-parametric approach for financial modelling by estimating the parametric
components (µ,Σ) and non-parametric components (density generator g) of an
elliptical distribution. Regarding the tail-dependence coefficient, it suffices to
consider the tail behavior of the density generator.

http://www.xplore-stat.de/help/TailCoeffCopula.html


38 2 Tail dependence

T
ab

le
2.

1:
T

ai
l-

de
pe

nd
en

ce
co

effi
ci

en
t

(T
D

C
)

fo
r

va
ri

ou
s

A
rc

hi
m

ed
ea

n
co

pu
la

e.
N

um
be

rs
co

rr
es

po
nd

to
ta

bl
e

4.
1

in
N

el
se

n
(1

99
9)

,
p.

94
.

N
u

m
b

er
C

(u
,v

)
φ
θ
(t

)
θ
∈

u
p

p
er

-T
D

C
lo

w
er

-T
D

C
&

T
y
p

e

(1
)

P
a
re

to
m

a
x
( [u
−
θ

+
v
−
θ
−

1
]−

1
/
θ
,0
)

( t−
θ
−

1
)/
θ

[−
1
,∞

)\
{0
}

0
fo

r
θ
>

0
2
−

1
/
θ

fo
r
θ
>

0

(2
)

m
a
x
( 1
−
[ (1
−
u

)θ
+

(1
−
v
)θ
] 1/θ

,0
)

(1
−
t)
θ

[1
,∞

)
2
−

2
1
/
θ

0

(3
)

A
li

u
v

1
−
θ
(1
−
u

)(
1
−
v
)

lo
g

1
−
θ
(1
−
t)

t
[−

1
,1

)
0

0

M
ik

h
a
il

-H
a
q

(4
)

G
u

m
b

el
-

ex
p
( −

[ (−
lo

g
u

)θ
+

(−
lo

g
v
)θ
] 1/θ

)
(−

lo
g
t)
θ

[1
,∞

)
2
−

2
1
/
θ

0

H
o
u

g
a
a
rd

(1
2
)

( 1
+
[ (u
−

1
−

1
)θ

+
(v
−

1
−

1
)θ
] 1/θ

) −1
( 1 t
−

1
) θ

[1
,∞

)
2
−

2
1
/
θ

2
−

1
/
θ

(1
4
)

( 1
+
[ (u
−

1
/
θ
−

1
)θ

+
(v
−

1
/
θ
−

1
)θ
] 1/θ

) −θ
( t−1

/
θ
−

1
) θ

[1
,∞

)
2
−

2
1
/
θ

1 2

(1
9
)

θ
/

lo
g
( eθ/

u
+
eθ
/
v
−
eθ
)

eθ
/
t
−
eθ

(0
,∞

)
0

1



2.2 Calculating the tail-dependence coefficient 39

Figure 2.3: Tail-dependence coefficient λ versus α for ρ = 0.5, 0.3, 0.1

Schmidt (2002b) shows that bivariate elliptically-contoured distributions are
upper and lower tail-dependent if the tail of their density generator is regularly
varying. Further a necessary condition for tail dependence is given which is
somewhat weaker than regular variation of the latter tail: precisely, the tail
must be O-regularly varying.
Although the equivalence of tail dependence and regularly-varying density gen-
erator cannot be shown, all density generators of well-known elliptical distri-
butions are given either by a regularly varying tail or a not O-regularly varying
tail. This justifies a restriction to the class of elliptical distributions with regu-
larly varying density generator if one wants to incorporate tail dependence. A
reference for regular and O-regular variation is Bingham, Goldie, and Teugels
(1987).

The following closed-form expression exists (Schmidt, 2002b) for the upper
and lower tail-dependence coefficient of an elliptically-contoured random vector
(X1, X2)> ∈ E2(µ,Σ,Φ) with positive-definite matrix Σ, having a regularly
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varying density generator g with regular-variation index −α/2− 1 < 0 :

λ := λU = λL =

∫ h(ρ)

0

uα√
1− u2

du∫ 1

0

uα√
1− u2

du

, (2.5)

where ρ := Σ12/
√

Σ11Σ22 and h(ρ) :=
(

1 + (1−ρ)2

1−ρ2

)−1/2

(see also Figure 2.3).
Note that ρ corresponds to the ”correlation” coefficient when this exists (Fang,
Kotz, and Ng, 1990). Moreover, the upper tail-dependence coefficient λU co-
incides with the lower tail-dependence coefficient λL and depends only on the
”correlation” coefficient ρ and the regular-variation index α.

Table 2.2 lists various elliptical distributions, the corresponding density gen-
erators (here cn denotes a normalizing constant depending only on the di-
mension n) and the associated tail index α from which one easily derives the
tail-dependence coefficient using formula (2.5).

2.2.3 Other copulae

For many other closed-form copulae one can explicitly derive the tail-dependence
coefficient. Table 2.3 lists various well-known copula-functions and the corre-
sponding lower and upper TDC. Most copulae are listed in the monograph of
Joe (1997).
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Table 2.2: Tail index α for various density generators g of multivariate elliptical
distributions. (Kν denotes the modified Bessel function of the third
kind (or Macdonald function))

Number & Type Density generator g or Parameters & α
characteristic generator Φ for n = 2

(23) Normal g(u) = cn exp(−u/2) - ∞

(24) t g(u) = cn
(

1 +
t

θ

)−(n+θ)/2

θ > 0 θ

(25)
Symmetric
general.
hyperbolic

g(u) = cn
Kλ−n2 (

√
ψ(χ+ u))

(
√
χ+ u)

n
2−λ

ψ, χ > 0
λ ∈ R ∞

(26)
Symmetric
θ-stable

Φ(u) = exp
[
−
(

1
2
u
)θ/2]

θ ∈ (0, 2] θ

(27) logistic g(u) = cn
exp(−u)

(1 + exp(−u))2
- ∞
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2.3 Estimating the tail-dependence coefficient

Suppose X, X(1), . . . , X(m) are i.i.d. bivariate random vectors with distribu-
tion function F and copula C. We assume continuous marginal distribution
functions Fi, i = 1, 2. Techniques testing for tail dependence or tail indepen-
dence are given for example in Ledford and Tawn (1996).

We propose the following two non-parametric estimators for the lower and
upper tail-dependence coefficient λU , λL, based on the copula representation
(2.3). Let Cm be the empirical copula defined by

Cm(u, v) = Fm, F
−1
1m(u), F−1

2m(v) (2.6)

with Fm and Fim denoting the empirical distribution functions corresponding
to F, Fi, i = 1, 2. Let R(j)

m1 and R(j)
m2 be the rank of X(j)

1 and X(j)
2 , j = 1, . . . ,m,

respectively. The first estimators are based on formulas (2.1) and (2.2):

λ̂
(1)
U,m =

m

k
Cm

{(
1− k

m
, 1
)
×
(

1− k

m
, 1
)}

=
1
k

m∑
j=1

1{R(j)
m1>m−k,R

(j)
m2>m−k}

(2.7)

and

λ̂
(1)
L,m =

m

k
Cm

( k
m
,
k

m

)
=

1
k

m∑
j=1

1{R(j)
m1≤k,R

(j)
m2≤k}

, (2.8)

where k = k(m) → ∞ and k/m → 0 as m → ∞, and the first expression
in (2.7) has to be understood as the empirical copula-measure of the interval
(1−k/m, 1]×(1−k/m, 1]. The second estimators are based on techniques from
extreme-value theory. We refer the reader to Schmidt and Stadtmüller (2002)
for more details.

λ̂
(2)
U,m = 2− m

k

{
1− Cm

(
1− k

m
, 1− k

m

)}
= 2− 1

k

m∑
j=1

1{R(j)
m1>m−k or R

(j)
m2>m−k}

, (2.9)
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with k = k(m)→∞ and k/m→ 0 as m→∞. λ̂(2)
L,m is defined similarly. The

optimal choice of k is related to the usual variance-bias problem, which we in-
vestigate in a forthcoming work. Strong consistency and asymptotic normality
are addressed in Schmidt and Stadtmüller (2002). See also Schmidt (2002a)
for related results within the class of elliptically-contoured distributions and
copulae.

The quantlet TailCoeffEstimation estimates the upper and lower TDC based
on formulas (2.7) and (2.8). The inputs of this quantlet are the two-dimensional
data-set, the threshold k, and whether the lower or upper TDC is calculated.
The result of the application is assigned to the variable TDC and contains the
estimated lower or upper TDC, respectively.

TDC = TailCoeffEstimation(data,threshold,upper)
Estimates the upper and lower tail-dependence coefficient based
on formulas (2.7) and (2.8).

Now we focus on an elliptically-contoured bivariate random vector X. In the
presence of tail dependence, arguments from Section ?? justify considering
only elliptical distributions having a regularly varying density generator with
tail index α. According to Schmidt (2002b), this implies that the distribution
function of ||X||2 has also a regularly varying tail with index α (|| · ||2 denotes
the Euclidean norm). Formula (2.5) shows that the upper and lower tail-
dependence coefficient λU and λL depend only on the tail index α and the
”correlation” coefficient ρ, precisely λU = λL = λU (α, ρ). Hence the following
parametric estimator for the tail-dependence coefficient is suggested:

λ̂
(3)
U,m = λ̂

(3)
L,m = λ

(3)
U (α̂m, ρ̂m). (2.10)

Several robust estimators ρ̂m for ρ have been given in the literature (Frahm,
Junker, and Schmidt, 2002). Regarding the tail index α, there are well-known
estimators obtainable from extreme-value theory. Among these, the Hill esti-
mator represents a natural one for the tail index α :

α̂m =
(1
k

k∑
j=1

log ||X(j,m)||2 − log ||X(k,m)||2
)−1

, (2.11)

where ||X(j,m)||2 denotes the j-th order statistics of ||X(1)||2, . . . , ||X(m)||2 and

http://www.xplore-stat.de/help/TailCoeffEstimation.html
http://www.xplore-stat.de/help/TailCoeffEstimation.html
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k = k(m)→∞ is chosen in an appropriate way. For a discussion on the right
choice we refer the reader to Embrechts, Klüpppelberg and Mikosch (1997),
Drees and Kaufmann (1998), and Groeneboom and de Wolf (2002).

The relationship between the tail index α, the density generator, and the ran-
dom variable ||X||2 is established in Schmidt (2002b). Observe that the latter
TDC estimator is biased, even though the tail-index estimator is unbiased.

The quantlet TailCoeffEstimElliptical estimates the coinciding upper and
lower TDC of a bivariate elliptically distributed data-set utilizing the Hill es-
timator. The inputs of this quantlet are the two-dimensional data-set and the
threshold k. The result of the application is assigned to the variable TDC and
contains the estimated coinciding lower and upper TDC.

TDC = TailCoeffEstimElliptical(data,threshold)
Estimates the upper and lower tail-dependence coefficient based
on formulas (2.10) and (2.11).

2.4 Estimation and empirical results

The figures below reveal that tail dependence is indeed often found in financial
data. Provided are two scatter plots of daily negative log-returns of a tuple of
financial securities and the corresponding upper TDC estimate λ̂(1)

U for various
k (for notational convenience we drop the index m). Data-set D1 contains
negative daily stock-log-returns of BMW and Deutsche Bank and data-set D2

consists of negative daily exchange-rate log-returns of DEM-USD$ and YEN-
USD$. For modeling reasons we assume that the daily log-returns are iid
observations. Both plots show the presence of tail dependence and the order of
magnitude of the tail-dependence coefficient. Moreover, the typical variance-
bias problem for various threshold values k can be observed. In particular,
a small k comes along with a large variance of the TDC estimate, whereas
an increasing k results in a strong bias. In the presence of tail dependence,
k is chosen such that the TDC estimate λ̂

(1)
U lies on a plateau between the

decreasing variance and the increasing bias. Thus for the data-set D1 we take
k between 80 and 110 which provides a TDC estimate of λ̂(1)

U,D1
= 0.28, whereas

for D2 we estimate λ̂(1)
U,D2

= 0.14.

An application of TDC estimations is given within the Value at Risk (VaR)

http://www.xplore-stat.de/help/TailCoeffEstimElliptical.html
http://www.xplore-stat.de/help/TailCoeffEstimElliptical.html
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Figure 2.4: Scatter plot of BMW versus Dt. Bank negative daily stock log-
returns (2325 data points) and the corresponding TDC estimate
λ̂

(1)
U for various k.
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Figure 2.5: Scatter plot of DEM-USD versus YEN-USD negative daily
exchange-rate log-returns (3126 data points) and the corresponding
TDC estimate λ̂(1)

U for various k.

framework of asset portfolios. VaR calculations relate to high quantiles of
portfolio-loss distributions and asset return distributions, respectively. In par-
ticular, VaR estimations are highly sensitive towards tail behavior and tail de-
pendence of the portfolio’s asset-return distributions. Fitting the asset-return
random vector towards a multi-dimensional distribution by utilizing a TDC
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estimate leads to more accurate VaR estimates. See Schmidt and Stadtmüller
(2002) for an extension of the bivariate tail-dependence concept to the multi-
dimensional framework. Observe that upper tail dependence for a bivariate
random vector (X1, X2)> is equivalent to

λU = lim
α→0

P(X2 > V aR1−α(X2)|X1 > V aR1−α(X1)) > 0. (2.12)

In the last part of this chapter we investigate some properties of the above in-
troduced TDC estimators. 1000 independent copies of m = 500, 1000, 2000 iid
random vectors of a bivariate standard t-distribution with θ = 1.5, 2, 3 degrees
of freedom are generated and the upper TDC’s are estimated. The empirical
bias and mean-squared-error (MSE) for all three introduced TDC estimation
methods are derived and presented in Table 2.4, 2.5, 2.6, 2.7, and 2.8, re-
spectively. For the parametric approach we apply the procedure explained in
Section ?? and estimate ρ by a trimmed Pearson-correlation coefficient with
trimming portion 0.05% and θ by a Hill-type estimator. Here we choose the op-
timal threshold value k according to Drees and Kaufmann (1998). Observe that
the common ”correlation” coefficient ρ does not exists for θ ≤ 2. In this case ρ
denotes some dependence parameter and a more robust estimation procedure
is developed in Frahm, Junker, and Schmidt (2002).

Table 2.4: Bias and MSE for the non-parametric upper TDC estimator λ̂(1)
U .

Original θ = 1.5 θ = 2 θ = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161
Estimator λ̂

(1)
U λ̂

(1)
U λ̂

(1)
U

Bias (MSE) Bias (MSE) Bias (MSE)

m = 500 0.0255 (0.00369) 0.0434 (0.00530) 0.0718 (0.00858)
m = 1000 0.0151 (0.00223) 0.0287 (0.00306) 0.0518 (0.00466)
m = 2000 0.0082 (0.00149) 0.0191 (0.00169) 0.0369 (0.00270)
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Table 2.5: Bias and MSE for the non-parametric upper TDC estimator λ̂(2)
U .

Original θ = 1.5 θ = 2 θ = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161
Estimator λ̂

(2)
U λ̂

(2)
U λ̂

(2)
U

Bias (MSE) Bias (MSE) Bias (MSE)

m = 500 0.0539 (0.00564) 0.0703 (0.00777) 0.1031 (0.01354)
m = 1000 0.0333 (0.00301) 0.0491 (0.00437) 0.0748 (0.00744)
m = 2000 0.0224 (0.00173) 0.0329 (0.00228) 0.0569 (0.00436)

Table 2.6: Bias and MSE for the parametric upper TDC estimator λ̂(3)
U , tail

index estimator α̂, and ρ̂ for θ = 1.5, ρ = 0.
Original θ = 1.5 θ = 1.5 θ = 1.5

parameters λU = 0.2296 α = 1.5 ρ = 0
Estimator λ̂

(3)
U α̂ ρ̂

Bias (MSE) Bias (MSE) Bias (MSE)

m = 500 0.0016 (0.00093) 0.00224 (0.04492) 0.00002 (0.00379)
m = 1000 0.0024 (0.00050) −0.0147 (0.02354) −0.0003 (0.00202)
m = 2000 0.0024 (0.00024) −0.0157 (0.01023) 0.00075 (0.00103)

Finally, we provide some plots illustrating the (non-)parametric estimation
results for the upper tail-dependence coefficient λ(i)

U , i = 1, 2, 3. Presented are
3 × 1000 TDC estimations for m = 500, 1000, 2000 in a consecutive ordering
within three plots for θ = 2. These plots visualize the decreasing empirical
variance for increasing m.
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Table 2.7: Bias and MSE for the parametric upper TDC estimator λ̂(3)
U , tail

index estimator α̂, and ρ̂ for θ = 2, ρ = 0.
Original θ = 2 θ = 2 θ = 2

parameters λU = 0.1817 α = 2 ρ = 0
Estimator λ̂

(3)
U α̂ ρ̂

Bias (MSE) Bias (MSE) Bias (MSE)

m = 500 0.0035 (0.00095) −0.0198 (0.10417) −0.00261 (0.00339)
m = 1000 0.0058 (0.00057) −0.0485 (0.05552) 0.0010 (0.00177)
m = 2000 0.0054 (0.00029) −0.0606 (0.02994) −0.00126 (0.00086)

Table 2.8: Bias and MSE for the parametric upper TDC estimator λ̂(3)
U , tail

index estimator α̂, and ρ̂ for θ = 3, ρ = 0.
Original θ = 3 θ = 3 θ = 3

parameters λU = 0.1161 α = 3 ρ = 0
Estimator λ̂

(3)
U α̂ ρ̂

Bias (MSE) Bias (MSE) Bias (MSE)

m = 500 0.0162 (0.00115) −0.2219 (0.29568) 0.0021 (0.00319)
m = 1000 0.0154 (0.00076) −0.2422 (0.20047) 0.0006 (0.00156)
m = 2000 0.0124 (0.00046) −0.2175 (0.12921) −0.00175 (0.00074)

The empirical studies show that the TDC estimator λ̂(3)
U outperforms the other

estimators. For m = 2000 the bias (MSE) of λ̂(1)
U is three (five) times larger

than the bias (MSE) of λ̂(3)
U , whereas the bias (MSE) of λ̂(2)

U is two (one and a
half) times larger than the bias (MSE) of λ̂(1)

U . More empirical and statistical
results for the estimators λ̂(1)

U and λ̂
(2)
U are given in Schmidt and Stadtmüller

(2002). However, remember that the estimator λ̂(3)
U was developed for bivariate

elliptically-contoured distributions. Thus the estimator λ̂(1)
U is recommended

for TDC estimations of general or unknown bivariate distributions.
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Figure 2.6: Non-parametric upper TDC estimates λ̂(1)
U for 3× 1000 iid samples

of size m = 500, 1000, 2000 from a bivariate t-distribution with
parameters θ = 2, ρ = 0, and λ

(1)
U = 0.1817.
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Figure 2.7: Non-parametric upper TDC estimates λ̂(2)
U for 3× 1000 iid samples

of size m = 500, 1000, 2000 from a bivariate t-distribution with
parameters θ = 2, ρ = 0, and λ

(2)
U = 0.1817.
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Figure 2.8: Non-parametric upper TDC estimates λ̂(3)
U for 3× 1000 iid samples

of size m = 500, 1000, 2000 from a bivariate t-distribution with
parameters θ = 2, ρ = 0, and λ

(3)
U = 0.1817.
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3 Implied Trinomial Trees

Karel Komorád

The method of Implied Trinomial Trees represents an option pricing technique
that tries to fit the market volatility smile. It uses an inductive algorithm
constructing a possible evolution process of underlying prices from the current
market option data. This chapter recalls the procedure as described in Derman,
Kani and Chriss (1996) and shows its general use in XploRe.

3.1 Introduction

In recent decades option-like contracts have been through a giant evolution.
Options are financial derivatives speculating on the value of an underlying
asset. The boom in research on options and the use of them started after Black
and Scholes published the formula for options prices. Options are maybe more
common than one could think – many issues of corporate securities (e.g. bonds
or stocks) also have option features. New financing techniques, for instance,
contingent value rights (CVR’s), are straightforward applications of options.
Liquidly traded options are important financial instruments used for hedging
– they can be included into the portfolio to reduce risk. So option pricing has
become one of the basic techniques in finance.

Unfortunately, option prices computed by the Black-Scholes formula and the
market options prices show a discrepancy. This deviation may be due to the
assumption of constant volatility in the Black-Scholes model which is hardly
ever fulfilled in the market. Therefore, new approaches were examined to find
options prices consistent with the market. Binomial trees, discrete versions
of the Black-Scholes model, are intuitive and probably the most commonly
used basic procedure for option pricing. Derman and Kani (1994) presented
an extension of binomial trees called implied binomial trees that fit the market
data. Implied trinomial trees (ITT) are analogical extension of trinomial trees.

http://artax.karlin.mff.cuni.cz/~komorad
http://www.xplore-stat.de
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Trinomial trees converge in the continuous limit to the same result as binomial
trees, but the use of ITT’s give us a freedom in the choice of the possible path
of the underlying price, the so called state space. This freedom could be in
some circumstances desirable. Figure ??(a) shows a possible state space with
three periods over six years. An ITT with one-year time steps over ten years
is depicted in Figure ??(b).
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3.2 Basic Option Pricing Overview

Options are contingent claims on the value of an underlying asset, usually a
stock or a traded market index. The simplest type of options are European
options. Their importance is mainly theoretical. An European call (or put)
gives the owner the right to buy (or sell) an underlying asset at a fixed price
(the so called strike price) at a given date.

The famous Black-Scholes model of option pricing can be viewed as a continu-
ous generalization of duplication model. For an explanation of the duplication
model see Ross, Westerfield and Jaffe (2002). Black and Scholes assume that
the underlying asset follows a geometric Brownian motion with a constant
volatility and is described by the stochastic differential equation

dSt
St

= µdt+ σdZt, (3.1)

where S denotes the underlying price, µ is the expected return and Z stands
for the standard Wiener process. As a consequence, the underlying distribu-
tion is lognormal. This is the crucial point – volatility is the only parameter of
the Black-Scholes formula which is not explicitly observable from the market
data. When plugging the market option prices into the formula and solving for
volatility (the so called implied volatility), empirical data shows a variation
with both exercise (the skew structure) and expiration time (the term struc-
ture), both together are commonly called the volatility smile. Figure 3.1
illustrates this behavior. Panel 3.1(a) shows the decrease of implied volatility
σimp with the strike level of the put options on the DAX index with a fixed
expiration of 52 days, as observed on January 29, 1999. Panel 3.1(b) shows the
increase of σimp with the time to expiration of put options with a fixed strike
level 6000 DM.
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Figure 3.1: Implied Volatilities of DAX Options on Jan 29, 1999.
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Implied volatility of an option is the market’s estimate of the average future
underlying volatility during the life of that option, local volatility is the
market’s estimate of underlying volatility at a particular future time and market
level. Let us recall that as a consequence of complete markets, the Black-Scholes
model is risk-neutral.

The most natural simplification of the Black-Scholes model are binomial trees.
The binomial tree corresponding to the risk neutral underlying evaluation pro-
cess is the same for all options on this asset, no matter what the strike price
or time to expiration is. The tree cannot know which option we are valuating
on it. There are several alternative ways to construct a binomial tree. Here
we will recall the familiar Cox-Ross-Rubinstein (CRR) binomial tree. It has a
constant logarithmic spacing between nodes on the same level. This spacing
shows the future price volatility. Figure 3.2 shows a standard CRR tree. Start-
ing at a general node S, the price of the underlying asset can either increase
to the higher price Su with the probability p or decrease to the lower price Sd
with the probability 1− p:

Su = Seσ
√

∆t (3.2)

Sd = Se−σ
√

∆t (3.3)

p =
F − Sd
Su − Sd

(3.4)

where F denotes the forward price in the node S and σ is the constant volatility.
For other types of binomial trees see Derman, Kani and Chriss (1996) .

New models try to overcome the problem of varying volatility and to price
options consistent with the market prices – to account for the volatility smile.
However many of them extend the original Black-Scholes theory. Let us men-
tion, for instance, incorporating a stochastic volatility factor or discontinuous
jumps in the underlying price. But these methods bring other problems. In
the next section we will pay attention to another approach of Black-Scholes
extension developed in Derman and Kani (1994) – to the implied trees.
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S

Su

Sd

p

1-p

Figure 3.2: CRR Binomial Tree.

3.3 Trees and Implied Models

While the Black-Scholes attitude assumes that the underlying asset follows
geometric Brownian motion from equation (??) with a constant volatility,
implied theories assume that the stock or index price follows a process, whose
volatility σ(S, t) varies with the spot price and time. This process can be
expressed by the following stochastic differential equation:

dSt
St

= µdt+ σ(S, t)dZt. (3.5)

This approach ensures that the valuation of the option remains preference-free
(all uncertainty is in the spot price and thus we can hedge options using the
underlying). Derman and Kani (1994) shows that it is possible to determine
σ(S, t) directly from the market prices of liquidly traded options.

The most natural discrete representation of a non-lognormal evolution process
of the underlying prices is an implied binomial tree (IBT). It is similarly like the
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CRR binomial tree is a discrete version of the Black-Scholes constant-volatility
process. For an exhaustive explanation on IBT’s see Derman and Kani (1994).
Generally we can use any (higher) multinomial tree as a discrete development
from the Black-Scholes model. However, all of them converge, as the time
step tends towards zero, to the same continuous result – the constant-volatility
process. IBT’s are, from the set of all implied multinomial trees, minimal, i.e.
they have only one degree of freedom – the arbitrary choice of the central node
at each level of the tree. In this sense one may feel that they are sufficient
and no more complicated trees are necessary. Despite the limiting similarity of
multinomial trees, one form of them could be more convenient. Sometimes one
may wish more flexibility in the discrete world – to get transition probabilities
and probability distributions which vary as smoothly as possible across the tree.
This is important especially when the market option prices are not very precise
(e.g. because of inefficiency, market frictions, etc.). It is useful to recall the
concept of Arrow-Debreu prices before the following derivation in Section 3.4.
Arrow-Debreu price λn,i at node (n, i) is computed as the sum over all paths
starting in the root of the tree leading to node (n, i) of the product of the
risklessly discounted transition probabilities. Arrow-Debreu price of the root
is equal to one. Arrow-Debreu prices at the final level of a (multinomial) tree
are a discrete approximation of the implied distribution. Notice that they are
discounted and thus the risk-neutral probability corresponding to each node
(at the final level) should be calculated as the product of the Arrow-Debreu
price and the factor er>.
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Possible paths from the root to A

A

Figure 3.3: Computing Arrow-Debreu Price in a Binomial Tree.
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3.4 ITT’s and Their Construction

3.4.1 Basic insight

A trinomial tree with N levels is a set of nodes sn,i, n = 1, . . . , N , i =
1, . . . , 2n−1. The underlying price can move from each node sn,i to one of three
nodes: with probability pi to the upper node, value sn+1,i, with probability qi
to the lower node, value sn+1,i+2 and with probability 1− pi− qi to the middle
node, value sn+1,i+1. Let us denote the nodes in the new level with capital
letters: Si(=sn+1,i), Si+1(=sn+1,i+1) and Si+2(=sn+1,i+2) respectively.

(a)

s

S

S

S

n,i

i

i+1

i+2

p

1 - p  - q

q

i

i i

i

(b)

s

s

s

s

S

S

S

S

S

S

S

S

1

2

2n-2

2n-1

1

2

3

4

2n-2

2n-1

2n

2n+1

Figure 3.4: General Nodes in a Trinomial Tree.

Figure 3.4(a) shows a single node of a trinomial tree. Starting in the node sn,i
at time tn there are five unknown parameters: the two transition probabilities
pn,i, qn,i and the three new node prices Si, Si+1, and Si+2. Let Fi denote the
known forward price of the spot sn,i and λi the known Arrow-Debreu price
at node (n, i). In particular, Arrow-Debreu prices for a trinomial tree can be
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obtained by the following iterative formulas:

λ1,1 = 1 (3.6)
λn+1,1 = e−r∆tλn,1pn,1 (3.7)
λn+1,2 = e−r∆t (λn,1(1− pn,1 − qn,1) + λn,2pn,2) (3.8)

λn+1,i+1 = e−r∆t (λn,i−1qi−1 + λn,i(1− pn,i − qn,i) + λn,i+1pn,i+1)(3.9)
λn+1,2n = e−r∆t (λn,2n−1(1− pn,2n−1 − qn,2n−1) + λn,2n−2qn,2n−2)(3.10)

λn+1,2n+1 = e−r∆tλn,2n−1qn,2n−1 (3.11)

Figure 3.4(b) shows two levels of a general trinomial tree 1. The evolution
process of underlying prices can be seen discrete through an implied binomial
tree. Implied trinomial tree (ITT) is another discrete representation of the
same process. What we desire from an ITT, and in general from any implied
tree, is:

1. the tree reproduces correctly the volatility smile,

2. the tree is risk-neutral,

3. all the transition probabilities are from the interval (0, 1).

To fulfill the risk-neutrality condition, the expected value of the underlying
price sn,i in the next period tn+1 must be its known forward price:

Esn,i = piSi + (1− pi − qi)Si+1 + qiSi+2 = Fi = e(r−δ)∆tsn,i, (3.12)

where r denotes the continuous interest rate, δ the dividend yield and ∆t is
the time step from tn to tn+1. Derman, Kani and Chriss (1996) say that the
node prices and transition probabilities also satisfy:

pi(Si−Fi)2+(1−pi−qi)(Si+1−Fi)2+qi(Si+2−Fi)2 = F 2
i σ

2
i∆t+o(∆t), (3.13)

where σi is the stock or index price volatility during this time period and o(∆t)
denotes a term of higher order than ∆t. Therefore we have two constraints in
equations (3.12) and (3.13) for five unknown parameters. As a consequence,
there is no unique implied trinomial tree, we can thus choose one of the large
set of equivalent ITT’s. Equivalent in the sense, that as the time spacing ∆t
tends towards zero, all of these trees tend to give the same results. A common

1Here we slightly modificated the notation of Derman, Kani and Chriss (1996) to be con-
sistent with the program code.
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method is to choose freely the underlying prices and then to use these two
equations and solve them for the transition probabilities pi, qi. Afterward we
must make sure that these probabilities do not violate the condition 3 above.
Since in general all multinomial trees converge to the same theoretical result
(namely to the continuous process of evolution in the underlying asset), the
reason why we use ITT’s instead of IBT’s is that we gain these three degrees
of freedom. This freedom may allow us to fit the smile better, especially when
inconsistent or arbitrage-violating market options prices make a consistent tree
impossible. Even though the constructed tree is consistent, other difficulties
can arise when its local volatility and probability distributions are jagged and
”implausible”.

3.4.2 State space

There are several methods we can use to construct an initial state space. As
already mentioned, all of them converge to the same theory (constant-volatility
Black-Scholes model), in the continuous limit. In other words all these models
are equivalent discretizations of the constant volatility diffusion process. We
chose a constant-volatility Cox-Ross-Rubinstein (CRR) binomial tree. Then
we combined two steps of this tree into a single step of our new trinomial tree.
This is illustrated in Figure 3.5. Using equations (3.2) and (3.3) we can derive
the following formulas for the nodes in the new trinomial tree:

Si = sn+1,i = sn,i e
σ
√

2∆t (3.14)
Si + 1 = sn+1,i+1 = sn,i (3.15)

Si + 2 = sn+1,i+2 = sn,i e
−σ
√

2∆t (3.16)

Now, summing up the probabilities of reaching one of the three nodes, using for-
mula (3.4), we get the relationship for the up and down transition probabilities
in the trinomial tree (the middle transition probability is equal to 1− pi − qi):

pi =

(
er∆t/2 − e−σ

√
∆t/2

eσ
√

∆t/2 − e−σ
√

∆t/2

)2

qi =

(
eσ
√

∆t/2 − er∆t/2

eσ
√

∆t/2 − e−σ
√

∆t/2

)2

Derman, Kani and Chriss (1996) describes two other methods for building a
constant-volatility trinomial tree.
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Figure 3.5: Building a Constant-Volatility Tree by Combining Two Steps of a
CRR Binomial Tree.

When the implied volatility varies only slowly with strike and expiration, the
regular state space with uniform mesh size is adequate for constructing ITT
models. But if the volatility varies significantly with strike or time to maturity,
we should choose a state space reflecting this properties. Construction of a
trinomial space with proper skew and term structure proceeds in four steps.

• First, we build a regular trinomial lattice with constant time spacing ∆t
and constant level spacing, assuming all interest rates and dividends equal
to zero. Such a lattice can be constructed in the way described above.

• Secondly, we modify ∆t at different times. Let us denote the known
equally spaced time points t0 = 0, t1, . . . , tn = T , then we can find the
unknown scaled times t̃0 = 0, t̃1, . . . , t̃n = T by solving the following set
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of non-linear equations:

t̃k

n−1∑
i=1

1
σ2(t̃i)

+ t̃k
1

σ2(T )
= T

k∑
i=1

1
σ2(t̃)

; k = 1, . . . , n− 1. (3.17)

• Subsequently, we change ∆S at different levels. Denoting S1, . . . , S2n+1

the original known underlying prices and S̃1, . . . , S̃2n+1 the new scaled
unknown underlying prices respectively, we solve the following equation:

S̃k

S̃k−1

= exp
{

c

σ(Sk)
ln

Sk
Sk−1

}
k = 2, . . . , 2n+ 1 (3.18)

for some constant c (recommended to be some typical value of the local
volatility). There are 2n equations for 2n+ 1 unknown parameters. Here
we always suppose that the new central node is the same as the original
central node: S̃n+1 = Sn+1. For a more elaborate explanation of the
theory behind equations (3.17) and (3.18), set in the continuous frame,
see Derman, Kani and Chriss (1996).

• Lastly, you can grow all the node prices by a sufficiently large growth fac-
tor which removes forward prices violations (explained in Subsection 3.4.4).
Multiplying all zero-rate node prices at time tn by e(r−δ)(tn−tn−1) should
be always sufficient.

3.4.3 Transition probabilities

Once the state space of the ITT is fixed, we can compute the transition prob-
abilities for all tree nodes (n, i) at each tree level n. Let C(K, tn+1) and
P (K, tn+1) denote today’s price for a standard European call and put option,
respectively, struck at K and expiring at tn+1. These values can be obtained
by interpolating the smile surface at various strike and time points. Then the
trinomial tree value of an option is the sum over all nodes (n + 1, j) of the
discounted probability of reaching that node multiplied by the pay-off func-
tion, i.e. max(Sj − K, 0) for the call and max(K − Sj , 0) for the put option
respectively, where Sj denotes the spot price at the node (n+ 1, j):

C (K, tn+1) = e−r∆t
∑
j

{pjλj + (1− pj−1 − qj−1)λj−1 + qj−2λj−2} (Sj −K)+

(3.19)
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P (K, tn+1) = e−r∆t
∑
j

{pjλj + (1− pj−1 − qj−1)λj−1 + qj−2λj−2} (K −Sj)+

(3.20)
If we set the strike price K to the value Si+1, the stock price at the node
(n + 1, i + 1), rearrange the terms in the sum and use equation ( 3.12) we
can compute from equation ( 3.19) the transition probabilities pi, qi for all the
nodes above the central node:

pi =
er∆tC(Si+1, tn+1)−

∑i−1
j=1 λj(Fj − Si+1)

λi(Si − Si+1)
(3.21)

qi =
Fi − pi(Si − Si+1)− Si+1

Si+2 − Si+1
(3.22)

Similarly, we compute the transition probabilities from equation ( 3.20) for all
the nodes below (and including) the center node (n+ 1, n) at time tn:

qi =
er∆tP (Si+1, tn+1)−

∑2n−1
j=i+1 λj(Si+1 − Fj)

λi(Si+1 − Si+2)
(3.23)

pi =
Fi − qi(Si+2 − Si+1)− Si+1

Si − Si+1
(3.24)

Derivation of these equations is described in detail in Komorád (2002). Finally
the implied local volatilities are approximated from equation (3.13):

σ2
i
.=
pi(Si − Fi)2 + (1− pi − qi)(Si+1 − Fi)2 + qi(Si+2 − Fi)2

F 2
i ∆t

. (3.25)

3.4.4 Possible pitfalls

Equations (3.21) - (3.24) can unfortunately result in transition probabilities
which are negative or greater than 1. This is inconsistent with rational option
prices and allows arbitrage. We must face two forms of this problem. First, we
must watch that no forward price Fn,i of a node (n, i) falls outside the range of
daughter nodes at the level n + 1: Fn,i ∈ (sn+1,i+2, sn+1,i). Figure 3.6 shows
this type of problem. This is not very difficult to overcome, since the state
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Figure 3.6: Two Kinds of the Forward Price Violation.

space is our free choice – we can overwrite the nodes causing this problem. The
second problem refers to extreme values of options prices, which would imply
an extreme value of local volatility. This may not be possible to obtain with
probabilities between (0, 1). In such case we have to overwrite the option price
which produces the unacceptable probabilities. In practice it means that we
overwrite even these probabilities with numbers from the interval (0, 1) This
is always possible if our state space does not violate the forward condition.
From the great number of possible ways to overwrite wrong probabilities with
numbers between 0 and 1, we chose to set:

pi =
1
2

(
Fi − Si+1

Si − Si+1
+
Fi − Si+2

Si − Si+2

)
, qi =

1
2

(
Si − Fi
Si − Si+2

)
(3.26)

if Fi ∈ (Si+1, Si) and

pi =
1
2

(
Fi − Si+2

Si − Si+2

)
, qi =

1
2

(
Si+1 − Fi
Si+1 − Si+2

+
Si − Fi
Si − Si+2

)
(3.27)

if Fi ∈ (Si+2, Si+1). In either case the middle transition probability is equal to
1− pi − qi.

3.4.5 Illustrative examples

To illustrate the construction of an implied trinomial tree, let us now consider
that the volatility varies only slowly with the strike price and time to expiration.
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Assume that the current index level is 100 EUR, the annual riskless interest rate
r = 12%, dividend yield is δ = 4%. The annual Black-Scholes implied volatility
is assumed to be σ = 11%, moreover let us assume that the Black-Scholes
implied volatility increases (decreases) linearly by 10 basis points (=0.1%) with
every 10 unit drop (rise) in the strike price, i.e. σimpl = 0.11−∆Strike∗0.001.
To keep the example easy, we consider one-year steps over three years. First,
we construct the state space – a constant-volatility trinomial tree as described
in Section 3.4.2. The first node at time t0 = 0, labeled A in Figure 3.7, has
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Figure 3.7: State Space of a Trinomial Tree with Constant Volatility of 11%.

the value of sA = 100 – today’s spot price. The next three nodes, at time t1,
are computed from equation (3.14): S1 = 116.83, S2 = 100.00 and S3 = 85.59,
respectively. In order to determine the transition probabilities, we need to know
the put price struck at S2 = 100 and expiring one year from now P (S2, t1).
From the smile, the implied volatility of this option is 11%. We calculate
its price using a constant-volatility trinomial tree with the same state space,
and find it to be 0.987 EUR. The forward price corresponding to node A is
FA = Se(r∗−δ∗)∆t = 107.69. Here r∗ and δ∗ denote the continuous interest
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rate r∗ = log(1 + r) and δ∗ = log(1 + δ), respectively. The down transition
probability is then computed from equation (3.23)

qA =
elog(1+0.12)×10.987− Σ
1× (100.00− 85.59)

= 0.077.

The summation term Σ in the numerator is zero in this case, because there are
no nodes with price lower than S3 at time t1. The up transition probability pA
is computed from equation (3.24)

pA =
107.69 + 0.077× (100.00− 85.59)− 100

116.83− 100.00
= 0.523.

The middle transition probability is then equal to 1 − pA − qA = 0.6. As
one can see from equations (3.6) – (3.11) the Arrow-Debreu prices turn out
to be just discounted transition probabilities: λ1,1 = 0.467, λ1,2 = 0.358 and
λ1,3 = 0.069. Equation (3.25) then gives the value of the implied local volatility
at node A: σA = 9.5%. Let us show the computation of one node more. Have
a look at the node B in year 2 of Figure 3.7. The index level at this node is
sB = 116.83 and its forward price one year later is FB = 125.82. ¿From this
node, the index can move to one of three future nodes at time t3 = 3, with
prices s3,2 = 136.50, s3,3 = 116.83 and s3,4 = 100.00, respectively. The value
of a call option struck at 116.83 and expiring at year 3 is C(s3,3, t3) = 8.87,
corresponding to the implied volatility of 10.83% interpolated from the smile.
The Arrow-Debreu price λ2,2 is computed from equation (3.8):

λ2,2 = e− log(1+0.12)×1(0.467× (1− 0.517− 0.070) + 0.358× 0.523) = 0.339.

The numerical values here are the already known values from the last level
t1. The complete trees of Arrow-Debreu prices, transition probabilities and
local volatilities for our example are shown in Figures 3.8 – 3.10. Now, using
equations (3.21) and (3.22) we can find the transition probabilities:

p2,2 =
elog(1+0.12)×1 × 8.87− Σ
0.339× (136.50− 116.83)

= 0.515

q2,2 =
125.82− 0.515× (136.50− 116.83)− 116.83

100− 116.83
= 0.068,

where Σ contributes with the only term 0.215 × (147 − 116.83) (there is one
single node above SB whose forward price is equal to 147). Last from equation
(3.25), we find the implied local volatility at this node σB = 9.3%.
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Figure 3.8: Transition Probabilities when σimpl = 0.11−∆Strike ∗ 0.001.
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Figure 3.9: Tree of Arrow-Debreu prices when σimpl = 0.11−∆Strike ∗ 0.001.
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Figure 3.10: Implied Local Volatilities when σimpl = 0.11−∆Strike ∗ 0.001.
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As already mentioned in Section 3.4.4, the transition probabilities may fall out
of the interval (0, 1). If we slightly modificate our previous example, we can
show such a case. Let us now assume that the Black-Scholes volatility from
our example increases (decreases) linearly 0.5 percentage points with every 10
unit drop (rise) in the strike price, i.e. σimpl = 0.11−∆Strike ∗ 0.05 (that is,
the volatility is five times as steep as before – illustrated in Figure 3.11). Using
the same state space, we find unadmissable transition probabilities at nodes C
and D of Figures 3.12 – 3.14. To overwrite them with plausible values, we used
the set up described in equations (3.26) and (3.27).
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Figure 3.11: Skew structure from the examples. Thick line for σimpl = 0.11−
∆Strike∗0.001 and thin line when σimpl = 0.11−∆Strike∗0.005.
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Figure 3.12: Transition Probabilities when σimpl = 0.11−∆Strike ∗ 0.005.
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Figure 3.13: Tree of Arrow-Debreu prices when σimpl = 0.11−∆Strike∗0.005.

3.5 Computing Implied Trinomial Trees

3.5.1 Basic skills

The simplest way to invoke implied trinomial trees in XploRe is to use the
interactive menus, which guide you through the computation procedure:

{Ttree, P, Q, AD, LocVol, Onodes, Oprobs, Time} = ITT (volafunc)

http://www.xplore-stat.de
http://www.xplore-stat.de/help/ITT.html
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Figure 3.14: Implied Local Volatilities when σimpl = 0.11−∆Strike ∗ 0.005.

There is only one parameter that has to be inserted – the name of the volatility
function(s) volafunc. The output parameters will be discussed later on. First,
we consider only slow volatility variation. Then volafunc is one string con-
taining the name of the volatility function defined by the user. This function
has the following form:

sigma = volafunc (S, K, tau)

where S denotes the spot price, K the exercise price and tau is the time to
maturity on each level. For our first example we will assume that the implied
volatility is 15% for all expirations and that it increases (decreases) 0.5% with
every 10 points drop (rise) in the strike price:

library("finance") ; load the library
proc(sigma)=volafunc(S, K, tau) ; define the volatility function
sigma=0.015 + (S-K)/10 * 0.05

endp
ITT("volafunc") ; ITT’s with interactive menus

STFitt01.xpl

http://www.quantlet.org/mdstat/codes/stf/STFitt01.html
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XploRe asks you to insert the strike price, the annual interest rate and the
divided yield. Subsequently, you must insert all the time points, when the
steps of the ITT occurred. At this stage let us recall that the tree is supposed
to start at time t0 = 0. To end the insertion of the time steps, type any non-
positive value. For instance, in our example from subsection 3.4.5, we typed
consecutively: 0, 1, 2, 3 and 0. Once the ITT is computed, you can display
the results – a menu asks you to choose between the state space, the tree of
the transition probabilities, the tree of Arrow-Debreu prices, the tree of local
volatilities and the state price density. If you choose the state space of the tree
you can specify whether you want to describe the nodes with underlying prices
or the arrows with transition probabilities respectively. While in this plot the
scale of the y-axe corresponds to the underlying price, the tree in any other
graph is only auxiliary and the vertical spacing does not mean anything.

Next, let us consider significant term and skew structure. In such cases the
input parameter volafunc is a string vector with three rows containing names
of functions with the following syntax (the names are arbitrary):

sigma = term (t)

sigmader = termder (t)

sigma = skew (S)

The first row contains the name of the volatility function for the term structure
defined by the user. The second row is the name of the quantlet returning
Jacobian of this term structure function. Both of these two quantlets have
only one parameter time t and it is necessary that they can use vectors. The
third row is the name of the function for the skew structure. It has one input
parameter S which is the spot price. If there is no term structure, but significant
skew structure, insert in the first row only an empty string: volafunc[1]="".
The following quantlet computes the state space of an ITT with significant
term and skew structure.

STFitt02.xpl

The state space is plotted in Figure 3.15. Now we hid the part which manages
about the plotting routines, this will be explained later.

The general form of ITT without the interactivity is

http://www.xplore-stat.de
http://www.quantlet.org/mdstat/codes/stf/STFitt02.html
http://www.xplore-stat.de/help/ITT.html
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{Ttree, P, Q, AD, LocVol, Onodes, Oprobs, Time} = ITT(S,
r, div,

time,volafunc{,skewconst})

where S is the spot price of the underlying at time t0 = 0, r and div are
compounded riskless interest rate and dividend yield (both of them ∈ (0, 1)).
time is vector of time points corresponding to the tree. They are to be given
in years and they are supposed to increase. The parameter volafunc has been
already described above and skewconst is an optional parameter which will be
discussed in Section 3.5.2. The output Ttree is a matrix containing the Implied
Trinomial Tree. Ttree[1,1] is the root and all elements which do not belong
to the tree are NaN’s. P and Q are matrices with the up and down transition
probabilities respectively, AD is a matrix containing the Arrow-Debreu prices for
the computed tree and LocVol is a matrix with implied local volatilities. If there
were some violations of the forward condition (described in Subsection 3.4.4)
then Onodes is a matrix of NaN’s with the same dimensions like Ttree, but on
the places of the overwritten nodes is their value. If there were no overwritten
nodes Onodes is only scalar (=NaN). Oprobs is a matrix with two columns
containing x- and y-coordinates of the nodes, where a probability violated the
second condition from Section 3.4.4. If there were none, Oprobs is equal to
NaN. But for each probability causing an overwrite, four rows are appended to
the first auxiliary row 0~0. First row of this quartet is the parental node where
overwrite occurred, the three other rows are corresponding daughter nodes.
Time is the same as the input parameter time, if there is no significant term
structure. In other case it contains the solution of the equation system 3.17.
So if we change the parameter time from our last example: time=0|1|2, then
the variable impltree will contain these following components:

Table 3.1: Contents of impltree.Ttree

100 110.5 119.94
+NAN 103.97 112.18
+NAN 97.461 105.56
+NAN +NAN 98.944
+NAN +NAN 91.247

http://www.xplore-stat.de/help/ITT.html
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Figure 3.15: State Space with Significant Term and Volatility Structure.

Table 3.2: Contents of impltree.P

0.45353 0.67267
+NAN 0.72456
+NAN 0.70371

Table 3.3: Contents of impltree.Q

0.00053582 0.11468
+NAN 0.091887
+NAN 0.093641

STFitt03.xpl

http://www.quantlet.org/mdstat/codes/stf/STFitt03.html
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Table 3.4: Contents of impltree.AD

1 0.4123 0.24826
+NAN 0.4963 0.40038
+NAN 0.00048711 0.12417
+NAN +NAN 0.04091
+NAN +NAN 4.0831e-05

Table 3.5: Contents of impltree.LocVol

0.049924 0.040269
+NAN 0.036105
+NAN 0.04117

Table 3.6: Contents of impltree.Onodes

+NAN

The simplest way to display results is to use quantlet plotITT. It specifies
explicitly which components of the computed ITT should be plotted.

plotITT (itree, what{, r{, text{, prtext}}})

The input parameter itree is just the output parameter of the quantlet ITT,
i.e. a list containing Ttree, P, Q, AD, LocVol, Onodes, Oprobs and Time. what
is a vector determining, which plots will be displayed. It has up to 5 rows and
each non-zero tells XploRe that the corresponding plot should be shown. The
possible plots are in sequence: 1) state space of the given ITT, 2) trees with
transition probabilities, 3) the tree of local volatilities, 4) the tree of Arrow-
Debreu prices and 5) the state price density. r is the interest rate (∈ (0, 1)), and

http://www.xplore-stat.de/help/plotITT.html
http://www.xplore-stat.de/help/plotITT.html
http://www.xplore-stat.de/help/ITT.html
http://www.xplore-stat.de
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Table 3.7: Contents of impltree.Oprobs

0 0
0.83772 110.5

2 119.94
2 112.18
2 105.56

0.83772 103.97
2 112.18
2 105.56
2 98.944

0.83772 97.461
2 105.56
2 98.944
2 91.247

Table 3.8: Contents of impltree.Time

0
0.83772

2

it must be included whenever you want to show the state price density. text is
an optional parameter which can be used only when the state space of the ITT
should be plotted. It says whether the tree nodes should be described (text
is a nonzero) or not (text = 0). And similarly prtext determines whether
the arrows connecting the state space should be described with corresponding
transition probabilities. In default, the state space denotes any node which
violated the forward condition with a red rhombus and overwritten probabilities
are shown with magenta lines. For instance, the following commands produce
plot of the state price density of the implied trinomial tree from Figure ??(b).
The state price density is depicted in Figure 3.16.

STFitt04.xpl

http://www.quantlet.org/mdstat/codes/stf/STFitt04.html
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3.5.2 Advanced features

We have mentioned a constant c in Section 3.4.2. Derman, Kani and Chriss
(1996) suggest to set this constant, used for solving the non-linear equation
system (3.18), to represent the at-the-money or some other typical value of
local volatility. In default it is set to 0.1 in the quantlet ITT, but the parameter
skewconst allows to set it for each time step on a different value.

In order to allow the user to compose the plot of any trinomial tree (it does
not matter if it is a tree of state space, transition probabilities or something
else) with other graphical objects into one graph, there are quantlets returning
the tree as a graphical object. Moreover these quantlets allow the user to enjoy
other features by plotting the trees. Let us start with the quantlet grITTspd:

dat = grITTspd (ttree,ad,r,time)

Here ttree, ad and time are the output parameters Ttree, AD and Time respec-
tively, which were returned by the quantlet ITT; r is then the corresponding
compound interest rate. The output parameter dat is the estimated state price
density as a graphical object. The density curve will be estimated using quant-
let regest with quartic kernel and bandwidth of 20% of the range of the last
level in ttree.

Next, we introduce a quantlet used in general for any component of a trinomial
tree:
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Figure 3.16: Estimation of the State Price Density from an ITT.

http://www.xplore-stat.de/help/ITT.html
http://www.xplore-stat.de/help/grITTspd.html
http://www.xplore-stat.de/help/grITTspd.html
http://www.xplore-stat.de/help/ITT.html
http://www.xplore-stat.de/help/regest.html
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nodes = grITTcrr (onetree{,time{,col{,scale{,prec}}}})

Here onetree is any matrix output of the quantlet ITT: Ttree, P, Q, AD or
LocVol. time is an optional parameter, in default it is equidistant time axe,
but it can be also equal to the output parameter Time of ITT. Parameter col is
(2x1) vector, which specify the colours in the tree. The first row is the color of
the mesh and the second row the colour of its description. scale is a boolean
determining if the tree should be scaled by the values given in onetree or if
a particular constant-volatility trinomial tree should be plotted and the values
of onetree will be used only for description.

This is, for instance, used in the quantlet plotITT for plotting the transition
probabilities whose values have nothing common with the vertical spacing in
the tree. prec is a scalar specifying the precision of the description. The output
parameter nodes is a graphical object again.

The last graphical tool is the quantlet grITTstsp:

{nodes,probs,axe,on,op} = grITTstsp (itree{,text{,col{,prec}}})

Variable itree is the output of ITT again, text and prec have the same mean-
ing as before, but the parameter col has now five rows. They correspond in
the following order to the colour of the tree mesh, of the nodes description, of
the probabilities description, of the overwritten nodes, and lastly, of the colour
of overwritten probabilities. Here we have five output parameters – all of them
are composed graphical objects corresponding in sequence to the tree nodes, to
the description of the probabilities, to the time axe, to the overwritten nodes
and to the overwritten probabilities. For instance, Figure 3.15 was produced
by the following commands (the ITT impltree has been already computed
before):

STFitt02.xpl

Note that if there were no overwrites in the nodes or probabilities, on or op are
equal to NaN and it is not possible to show them.

http://www.xplore-stat.de/help/grITTcrr.html
http://www.xplore-stat.de/help/ITT.html
http://www.xplore-stat.de/help/ITT.html
http://www.xplore-stat.de/help/plotITT.html
http://www.xplore-stat.de/help/grITTstsp.html
http://www.xplore-stat.de/help/grITTstsp.html
http://www.xplore-stat.de/help/ITT.html
http://www.quantlet.org/mdstat/codes/stf/STFitt02.html
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If one wants to get a text output (the graphical output may be too ”wild”
and its description unreadable), it is possible to write the result in the XploRe
output window as a string:

ITTnicemat (title,onetree,prec)

Here title is a string with desired title of the matrix, onetree is any output
(tree) matrix from the quantlet ITT and prec specifies the precision. You can
compare Figure ??(a) with the result of nicemat: ITTnicemat

State Space Matrix STFitt05.xpl

Last in this section we will introduce a quantlet, which actually belongs into the
next section, but it is also possible to use it separately. ITTcrr is called by ITT
to compute the option price. It builds up a constant-volatility trinomial tree
(combining two steps of a standard CRR binomial tree), its formal definition
is:

{ttree,optprice} = ITTcrr (S, K, r, sigma, time, opt, div)

where S is the the spot price of the underlying, K is the exercise price, r is
the continuous interest rate (∈ (0, 1)), sigma is the constant volatility, time
is the vector of time points, opt = 1 specifies a call option and opt = 0 a
put option. div is the dividend rate (∈ (0, 1)). The output parameters are
ttree and optprice, the constant-volatility trinomial tree and the price of
given option respectively.

http://www.xplore-stat.de
http://www.xplore-stat.de/help/ITTnicemat.html
http://www.xplore-stat.de/help/ITT.html
http://www.xplore-stat.de/help/ITTnicemat.html
http://www.quantlet.org/mdstat/codes/stf/STFitt05.html
http://www.xplore-stat.de/help/ITTcrr.html
http://www.xplore-stat.de/help/ITT.html
http://www.xplore-stat.de/help/ITTcrr.html
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3.5.3 What is hidden

This subsection comments on auxiliary quantlets which are not intended for a
direct usage. First we present the quantlet ITTnewnodes, which computes a
new level of an implied trinomial tree. It also checks that the forward condition
from Section 3.4.4 is fulfilled.

{newnodes,overwritten} = ITTnewnodes (old, r, sigma, deltat, div)

old is a vector containing the underlying prices on last known level of the
tree. r and div are the continuous interest rate and dividend yield, sigma
is the volatility and deltat is the time step between the last and the new
level ∆t = tn+1 − tn The outputs are two vectors: the vector with the prices
in the new level newnodes and the vector overwritten. This corresponds to
newnodes, it is firstly filled with NaN’s and afterward, if a node is overwritten,
the corresponding node in overwritten contains its new value. It is worth
to mention how the implausible price will be overwritten: If the highest new
underlying price S1 is lower than the forward price F1 at the node sn,1, it will
be set up one percent higher than the forward, and similarly, any lowest new
underlying price S2n+1 which is higher than the forward price F2n−1 of the
node sn,2n−1 will be set 1% lower than this forward price.

The Arrow-Debreu prices will be computed stepwise with the same philosophy,
like the state space, with the difference that no overwrites are necessary.

newad = ITTad (up, down, ad, r, deltat)

ITTad computes the Arrow-Debreu prices of an Implied Trinomial Tree on one
particular level. up and down are vectors of up and down transition probabilities
going from the last level of known Arrow-Debreu prices ad. The new computed
prices are then returned in the vector newad.

fx = ITTterm (t)

http://www.xplore-stat.de/help/ITTnewnodes.html
http://www.xplore-stat.de/help/ITTnewnodes.html
http://www.xplore-stat.de/help/ITTad.html
http://www.xplore-stat.de/help/ITTad.html
http://www.xplore-stat.de/help/ITTterm.html
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ITTterm represents the non-linear equation system (3.17) – it computes its
value in time points given by the vector t. The equation system is solved
with the quantlet nmnewton. The Jacobian matrix necessary for the numerical
solution is returned by quantlet ITTtermder:

jac = ITTtermder (t)

http://www.xplore-stat.de/help/ITTterm.html
http://www.xplore-stat.de/help/nmnewton.html
http://www.xplore-stat.de/help/ITTtermder.html
http://www.xplore-stat.de/help/ITTtermder.html
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5 Nonparametric Productivity
Analysis

Wolfgang Härdle, Seok-Oh Jeong

5.1 Introduction

Productivity analysis is an important part of classical microeconomic the-
ory. Farrel (1957) studied the problem of measuring efficiency in an empiri-
cal way. Shephard (1970) formed the foundation of the modern theory of cost
and frontier function. Färe, Grosskopf, and Lovell (1985) and Färe, Grosskopf,
and Lovell (1994) provide a comprehensive survey of the problem of measuring
efficiency and the theoretical formulations of frontier function.

The activity of production units such as banks, universities, governments and
hospitals may be described and formalized by the production set of feasible
input-output points (x, y):

Ψ = {(x, y) ∈ Rp+q+ | x can produce y}.

In many cases y is one-dimensional, so Ψ can be characterized by a function g
called the frontier function or the production function:

Ψ = {(x, y) ∈ Rp+1
+ | y ≤ g(x)}.

The input (requirement) set X(y) is defined by:

X(y) = {x ∈ Rp+ | (x, y) ∈ Ψ},

which is the set of all input vectors x ∈ Rp+ that yield at least the output vector
y. The output (correspondence) set Y (x) defined by:

Y (x) = {y ∈ Rq+ | (x, y) ∈ Ψ},

http://ise.wiwi.hu-berlin.de/~haerdle
http://ise.wiwi.hu-berlin.de/~guest2
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which is the set of all output vectors y ∈ Rq+ that is obtainable from the input
vector x.

In productivity analysis one is interested in the input and output isoquants or
efficient boundaries, denoted by ∂X(y) and ∂Y (x) respectively. They consist
of the minimal attainable boundary in a radial sense: for y 6= 0,

∂X(y) = {x | x ∈ X(y), θx /∈ X(y), 0 < θ < 1}

and for Y (x) 6= {0},

∂Y (x) = {y | y ∈ Y (x), λy /∈ X(y), λ > 1}.

For y = 0 we have ∂X(y) = {0}, and for Y (x) = {0} ∂Y (x) = {0}.

Returns to scale is a characteristic of the surface of the production set. The
production set exhibits constant returns to scale (CRS) if, for α ≥ 0 and P ∈ Ψ,
αP ∈ Ψ; it exhibits non-increasing returns to scale (NIRS) if, for 0 ≤ α ≤ 1
and P ∈ Ψ, αP ∈ Ψ; it exhibits non-decreasing returns to scale (NDRS) if,
for α ≥ 1 and P ∈ Ψ, αP ∈ Ψ. Especially, a convex production set exhibits
non-increasing returns to scale, but note that the converse is not true.

Recall that, given a production set Ψ with the scalar output y, the production
function g can also be defined for x ∈ Rp+ :

g(x) = sup{y | (x, y) ∈ Ψ}.

It may be defined via the input set and the output set as well:

g(x) = sup{y | x ∈ X(y)} = sup{y | y ∈ Y (x)}.

We can interpret returns to scale in terms of the production function g:

• Constant returns to scale: For all t ≥ 0, g(tx) = tg(x).

• Non-decreasing returns to scale: For all t ≥ 1, g(tx) ≥ tg(x)

• Non-increasing returns to scale: For all t ≥ 1, g(tx) ≤ tg(x).

How can one evaluate the performance of a given pair of input and output?
When the outputs are scalars, one may do it with input x and output y by
computing g(x)−y or y/g(x). This is usually inadequate though when multiple
inputs or outputs are incorporated. In order to tackle this problem radial
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efficiency measures have been proposed. For a given input-output point (x0, y0),
its input efficiency is defined as

θIN(x0, y0) = inf{θ | θx0 ∈ X(y0)}.

The efficient level of input corresponding to the output level y0 is then given
by

x∂(y0) = θIN(x0, y0)x0.

Note that x∂(y0) is the intersection of ∂X(y0) and the ray θx0, θ > 0. The
output efficiency score θOUT(x0, y0) can be defined similarly:

θOUT(x0, y0) = sup{θ | θy0 ∈ Y (x0)}.

The efficient level of output corresponding to the input level x0 is given by

y∂(x0) = θOUT(x0, y0)y0.

5.2 Nonparametric Hull Methods

5.2.1 An Overview

The production set Ψ and the production function g is usually unknown, but
typically a sample of production units or decision making units (DMU’s) is
available instead:

X = {(xi, yi), i = 1, . . . , n}.

The problem of productivity analysis is to estimate Ψ or g from the data X .

The most popular nonparametric method is based on data envelopment anal-
ysis (DEA), which is an extension of Farrel (1957)’s idea and was popularized
in a modern operational research fashion by Charnes, Cooper, and Rhodes
(1978). Deprins, Simar, and Tulkens (1984), who extended the DEA to the
more flexible class of production sets, introduced the free disposal hull (FDH)
model dropping convexity assumption for the production set.

Statistical properties of these hull methods such as consistency and minimax
rate of convergence have been studied in the literature. Park (2001) and Simar
and Wilson (1999) provide insightful reviews on the statistical inference of
existing nonparametric frontier models.
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5.2.2 Data Envelopment Analysis

The data envelopment analysis (DEA) of the observed sample X is defined as
the smallest free disposable and convex set containing X :

Ψ̂DEA = {(x, y) ∈ Rp+q+ |x ≥
n∑
i=1

γixi, y ≤
n∑
i=1

γiyi

for some (γ1, . . . , γn) such that
n∑
i=1

γi = 1, γi ≥ 0 ∀i},

where the inequalities between vectors are understood componentwise. A set
Ψ is free disposable, if for given (x, y) ∈ Ψ all (x′, y′) with x′ ≥ x and y′ ≤ y
belong to Ψ. Free disposability is generally assumed in economic modeling.
The efficiency scores for a given input-output level (x0, y0) are estimated by :

θ̂IN(x0, y0) = min{θ > 0 | (θx0, y0) ∈ Ψ̂DEA};
θ̂OUT(x0, y0) = max{θ > 0 | (x0, θy0) ∈ Ψ̂DEA}.

The efficient levels for a given level (x0, y0) are estimated by

x̂∂(y0) = θ̂IN(x0, y0)x0; ŷ∂(x0) = θ̂OUT(x0, y0)y0.

The consistency and the convergence rate of this radial efficiency score with
multidimensional inputs and outputs were established analytically by Kneip,
Park, and Simar (1998). For p = 1 and q = 1, Gijbels, Mammen, Park, and
Simar (1999) obtained its limit distribution depending on the curvature of the
frontier and the density at boundary. Jeong and Park (2002) extended this
result to higher dimension.

5.2.3 Free Disposal Hull

The free disposal hull (FDH) of the observed sample X is defined as the smallest
free disposable set containing X :

Ψ̂FDH = {(x, y) ∈ Rp+q+ |x ≥ xi, y ≤ yi, i = 1, . . . , n}.

One define the estimators of efficiency scores by FDH in a similar way to DEA.
By a straightforward calculation we obtain their closed forms for a given input-
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output level (x0, y0) :

θ̂IN(x0, y0) = min
i:y≤yi

max
1≤j≤p

xji
xj0

;

θ̂OUT(x0, y0) = max
i:x≥xi

min
1≤k≤q

yki
yk0
,

where vj is the jth component of a vector v. The efficient levels for a given
level (x0, y0) are estimated by the same way as those for DEA. Park, Simar,
and Weiner (1999) showed that the limit distribution of the FDH estimator
with multivariate setup is a Weibull distribution depending upon the slope of
the frontier and the density at boundary.

5.3 DEA in Practice : Insurance Agencies

The quantlet deahull for DEA has the following syntax :

dea = deahull (X, Y)
computes the input and output efficiency score for each DMU
based on DEA

with input variables: X is a n × p matrix, p dimensional inputs of n DMU’s,
and Y is n× q matrix, q dimensional outputs of n DMU’s.

The list dea contains the output variables : dea.effscore is a n dimen-
sional vector containing the input efficiency scores, θ̂IN, of n DMU’s, and
dea.efflevel is n × p matrix containing the estimates of efficient level of
inputs, x̂∂ , of n DMU’s.

To illustrate how DEA works, consider an example from the empirical study
by Scheel (1999). He studied the efficiency of 63 agencies of a German insurance
company by the DEA method. The input (X ∈ R4

+) and output (Y ∈ R2
+)

variables were as follows:

X1 : Number of clients of Type A

X2 : Number of clients of Type B

http://www.xplore-stat.de/help/deahull.html
http://www.xplore-stat.de/help/deahull.html
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Table 5.1: Summary Statistics for 63 agencies of a German insurance company

Minimum Maximum Mean Median Std.Error
X1 42 572 225.54 197 131.73
X2 55 481 184.44 141 110.28
X3 0 140 19.762 10 26.012
X4 73756 693820 258670 206170 160150
Y1 2 70 22.762 16 16.608
Y2 696 33075 7886.7 6038 7208

X3 : Number of clients of Type C

X4 : Potential new premiums in EURO

Y1 : Number of new contracts

Y2 : Sum of new premiums in EURO

The two output variables are typical for insurance agencies. Summary statistics
for this data are given in Table 5.1. The included XploRe code reads the data
agency.dat, creates the input variables for the quantlet deahull, runs the
quantlet, and lists the efficiency and the efficient level of inputs for each agency
as a result, see Table 5.2 and Table 5.3.

The input efficient scores effscore are useful as a benchmark in comparing the
63 DMU’s, the insurance agencies. The list of efficient level of inputs provides
with a ’goal’ inputs for each agency to be efficient.

5.4 FDH in Practice : Manufacturing Industry

The quantlet fdhull for FDH has the following syntax:

eff = fdhull (X, Y)
computes the input and output efficiency score for each DMU
based on FDH

http://www.xplore-stat.de
http://www.xplore-stat.de/help/deahull.html
http://www.xplore-stat.de/help/fdhull.html
http://www.xplore-stat.de/help/fdhull.html
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Table 5.2: Efficiency score of the 63 DMU’s insurance Agencies

Effeciency score
1 0.38392
2 0.49063
3 0.86449
. .
. .
. .

62 0.79892
63 1

STFagency.xpl

Table 5.3: Efficiency level of the 63 DMU’s insurance Agencies

efflevel
1 52.981 92.909 3.8392 108960
2 81.444 60.838 2.4531 76895
3 131.4 72.617 2.5935 96070
. . . . .
. . . . .
. . . . .
62 66.311 87.083 1.5978 111710
63 108 257 0 299910

STFagency.xpl

with input variables: X is n× p matrix, p dimensional inputs of n DMU’s, and
Y is n× q matrix, q dimensional outputs of n DMU’s.

The arbitrary name eff is used to indicate the output variable: eff which is
the n×2 matrix containing the input and output efficiency scores of n DMU’s.

In order to illustrate how this quantlet works the Manufacturing Industry Pro-
ductivity Database from the National Bureau of Economic Research, USA is
considered. This database is available in the internet [http://www.nber.org]

http://www.quantlet.org/mdstat/codes/stf/STFagency.html
http://www.quantlet.org/mdstat/codes/stf/STFagency.html
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Table 5.4: Summary Statistics for Manufacturing Industry Productivity
Database (NBER, USA)

Minimum Maximum Mean Median Std.Error
X1 0.8 500.5 37.833 21 54.929
X2 18.5 145130 4313 1957.2 10771
X3 0.5 3807.8 139.96 49.7 362
X4 15.8 64590 2962.8 1234.7 6271.1
Y 34.1 56311 3820.2 1858.5 6392

with a description of the database. It contains annual industry-level data on
output, employment, payroll and other input costs, investment, capital stocks,
and various industry-specific price indexes from 1958 on hundreds of manufac-
turing industries (indexed by 4 digits numbers) in the United States. We chose
the data from 1996 (458 DMU’s), for example, with 4 input variables (p = 4)
and 1 output variable (q = 1) along with the study of Park, Simar, and Weiner
(1999) :

X1 : Total employment

X2 : Total cost of materials

X3 : Cost of electric and fuels

X4 : Total real capital stock

Y : Total value added

Summary statistics for this data are given in Table 5.4. The included XploRe
code reads the MS-Excel data file nber96.csv, creates the vector of the ID for
DMU’s and the input variables for the quantlet fdhull, runs the quantlet, and
lists the efficiency scores, θ̂IN(·, ·) and 1/θ̂OUT(·, ·), with ID of industries.

¿From Table 5.5, we see that the DMU indexed by 2015 is efficient in both input
and output oriented aspect. This means the DMU is one of the vertices of the
free disposal hull generated by the 458 observations. On the other hand, the
DMU 2298 seems to be good in input efficiency but poor in output efficiency.

With these efficiency scores we can estimate the efficient level of input (or
output) by multiplying (or dividing) the score to the corresponding observation.

http://www.xplore-stat.de
http://www.xplore-stat.de/help/fdhull.html
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Table 5.5: FDH efficiency scores of the 458 observations

fdh
1 2011 0.93803 0.97451
2 2013 0.64321 0.70255
3 2015 1 1
. . . .
. . . .
. . . .

75 2298 0.95588 0.47239
. . . .
. . . .
. . . .

458 3999 0.98961 0.94792

STFnber96.xpl

For example, DMU 2013 had inputs X1 = 88.1, X2 = 14925, X3 = 250,
X4 = 4365.1, and output Y = 5954.2 with input efficiency 0.64321 and with
output efficiency 0.70255. Then the efficient level of input for this firm is given
by X1 = 56.667, X2 = 9600, X3 = 160.8, and X4 = 2807.7. And in the aspect
of output efficiency this firm should have increased their output by Y = 4183.1
with the observed level of inputs to be considered as output technically efficient.

http://www.quantlet.org/mdstat/codes/stf/STFnber96.html
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6 Money Demand Modelling

Noer Azam Achsani, Oliver Holtemöller and Hizir Sofyan

6.1 Introduction

Money demand is one of the most important indicators for the monetary situ-
ation in a country. The relationship between money balances and their deter-
minants has been studied extensively. From the previous researches, there is
an overall agreement on the view that the knowledge of the demand for money
function is important for the formulation of an appropriate monetary policy.

In this paper, we explore the M2 money demand function for Indonesia in the
more recent period 1990:I - 2002:III. This period is dominated by the Asian
crises, which started in 1997. In the aftermath of the crisis, a number of
immense financial and economic problems have emerged in Indonesia. The
state has deteriorated, and inflation rates have risen in the middle of 1997
until the middle of 1998. The price level increased by about 16 percent in
1997 compared to the previous year. In the same period, the call money rate
increased temporarily from 12.85 percent to 57.10 percent and the money stock
increased by about 54 percent. The economy contracted as reflected by the
decrease in the GNP of about 11 percent. Given these extraordinary economic
developments, it may not be expected that a stable money demand function
existed during that period.

This research is at least important in two different respects. Firstly, it ex-
plores money demand using data of Indonesia, a very dynamic but relatively
unexplored country. Secondly, we employ not only standard econometric model
(which are normally used in money demand), but also a relatively new approach
in economics analysis, so called fuzzy Takagi-Sugeno model.

The fuzzy model can be used to explain the underlying structure of the systems.
In the real world, it is almost impossible to find a perfect situation in which

http://stat.wiso.uni-potsdam.de/lehrstuhl/mod.php?mod=userpage&menu=11&page_id=28/~
http://ise.wiwi.hu-berlin.de/~oliver
http://ise.wiwi.hu-berlin.de/~hizir
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all variables are available and countable. There are always some unpredictable
factors which influence the system. The use of fuzzy Takagi-Sugeno model as
an alternative may give us a complementary solution to the common one.

The rest of the paper is organized as follows. In the Section 2 we introduce
the money demand function and estimate the model. Section 3 performs the
fuzzy approach and its application to money demand. Last section presents
the conclusions of this research.

6.2 Money Demand

6.2.1 General Remarks and Literature

Major central banks stress the importance of money growth analysis and of
stable money demand function for monetary policy purposes. The Deutsche
Bundesbank, for example, has followed an explicit monetary targeting strat-
egy from 1975 to 1998, and the analysis of monetary aggregates is one of the
two pillars of the European Central Bank’s (ECB) monetary policy strategy.
Details about these central banks’ monetary policy strategies, a comparison
and further references can be found in Holtemöller (2002). The research on
the existence and stability of a money demand function is motivated inter alia
by the following two observations: (i) Money growth is highly correlated with
inflation, see McCandless and Weber (1995) for international empirical evi-
dence. Therefore, monetary policy makers use money growth as one indicator
for future risks to price stability. The information content of monetary aggre-
gates for future inflation assessment is based on a stable relationship between
money, prices and other observable macroeconomic variables. This relation-
ship is usually analyzed in money demand studies. (ii) The monetary policy
transmission process is still a “black box”, see Mishkin (1995) and Bernanke
and Gertler (1995). If we are able to specify a stable money demand function,
an important element of the monetary transmission mechanism is revealed and
may help to learn more about monetary policy transmission.

A huge literature exists about the analysis of money demand. The major-
ity of the studies is concerned with industrial countries. Examples are Hafer
and Jansen (1991), Miller (1991), McNown and Wallace (1992) and Mehra
(1993) for the USA; Lütkepohl and Wolters (1999), Coenen and Vega (1999),
Brand and Cassola (2000) and Holtemöller (2004) for the Euro area; Arize and
Shwiff (1993), Miyao (1996) and Bahmani-Oskooee (2001) for Japan; Drake
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and Chrystal (1994) for the UK; Haug and Lucas (1996) for Canada; Lim
(1993) for Australia and Orden and Fisher (1993) for New Zealand.

There is also a growing number of studies analyzing money demand in develop-
ing and emerging countries, primarily triggered by the concern among central
bankers and researchers around the world about the impact of moving toward
flexible exchange rate regimes, globalization of capital markets, ongoing finan-
cial liberalization, innovation in domestic markets, and the country-specific
events on the demand for money (Sriram, 1999). Examples are Hafer and Ku-
tan (1994) and Tseng et. al (1994) for China; Moosa (1992) for India; Arize
(1994) for Singapore and Deckle and Pradhan (1997) for ASEAN countries.

For Indonesia, a couple of studies have been conducted by applying the error
correction framework. The results, however, seem to be contradictory. Price
and Insukindro (1994) use quarterly data from 1969:I to 1987:IV. The results
were based on three different methods of testing for cointegration. Eagle Grager
method show that there was weak evidence of cointegrating relationship. Fur-
thermore Johansen’s cointegration technique found up to two cointegrating
vectors, but the error correction model (ECM) didn’t find a significant rela-
tionship. In contrast, Deckle and Pradhan (1997), who use annual data, do not
find any cointegrating relationship that can be interpreted as money demand
function.

6.2.2 Econometric Specification of Money Demand
Functions

The starting point of empirical money demand analysis is the choice of variables
to be included in the money demand function. It is common practice to assume
that the desired level of nominal money demand depends on the price level,
a transaction (or scaling) variable, and a vector of opportunity costs, see for
example Goldfeld and Sichel (1990), Ericsson (1999) and Holtemöller (2003):

(M∗/P ) = f(Y,R1, R2, ...), (6.1)

where M∗ is nominal money demanded, P is the price level, Y is real income
(the transaction variable), and Ri are the elements of the vector of opportunity
costs which possibly also includes the inflation rate. A money demand function
of this type is not only the result of traditional money demand theories but also
of modern micro-founded dynamic stochastic general equilibrium models, see
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for example Walsh (1998). An empirical standard specification of the money
demand function is the partial adjustment model (PAM). (Goldfeld and Sichel,
1990) show that a desired level of real money holdings MR∗t = M∗t /Pt:

lnMR∗t = φ0 + φ1 lnYt + φ2Rt + φ3πt, (6.2)

where Rt represents one or more interest rates and πt = ln(Pt/Pt−1) is the
inflation rate, and an adjustment cost function

C = α1 [lnM∗t − lnMt]
2 + α2 [(lnMt − lnMt−1) + δ (lnPt − lnPt−1)]2 (6.3)

yield the following reduced form

lnMRt = µφ0 + µφ1 lnYt + µφ2Rt + (1− µ) lnMRt−1 + γπt, (6.4)

where

µ = α1/(α1 + α2) and γ = µφ3 + (1− µ)(δ − 1). (6.5)

The parameter δ controls whether nominal money (δ = 0) or real money (δ =
−1) adjusts. Intermediate cases are also possible. Notice that the coefficient
to the inflation rate depends on the value of φ3 and on the parameters of the
adjustment cost function. The imposition of price-homogeneity is rationalized
by economic theory and Goldfeld and Sichel (1990) proposed that empirical
rejection of the unity of the price level coefficient should be interpreted as an
indicator for misspecification. The reduced form can also be augmented by
lagged independent and further lagged dependent variables in order to allow
for a more general adjustment process.

Rearranging (6.4) yields:

∆ lnMRt = µφ0 + µφ1∆ lnYt + µφ1 lnYt−1 + µφ2∆Rt
+µφ2Rt−1 − µ lnMRt−1 + γ∆πt + γπt−1

= µφ0 − µ
(

lnMRt−1 − φ1 lnYt−1 − φ2Rt−1 −
γ

µ
πt−1

)
+µφ1∆ lnYt + µφ2∆Rt + γ∆πt. (6.6)
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Accordingly, the PAM can also represented by an error-correction model like
(6.6).

Since the seminal works of Nelson and Plosser (1982), who have shown that
relevant macroeconomic variables exhibit stochastic trends and are only sta-
tionary after differencing, and Engle and Granger (1987), who introduced the
concept of cointegration, the (vector) error correction model, (V)ECM, is the
dominant econometric framework for money demand analysis. If a certain set
of conditions about the number of cointegration relations and exogeneity prop-
erties is met, the following single equation error correction model (SE-ECM)
can be used to estimate money demand functions:

∆ lnMRt = ct + α (lnMRt−1 − β2 lnYt−1 − β3Rt−1 − β4πt−1)︸ ︷︷ ︸
error correction term

+
k∑
i=1

γ1i∆ lnMRt−i +
k∑
i=0

γ2i∆ lnYt−i +
k∑
i=0

γ3i∆Rt−i +
k∑
i=0

γ4i∆πt−i,

(6.7)

It can be shown that (6.4) is a special case of the error correction model (6.7).
In other words, the PAM corresponds to a SE-ECM with certain parameter re-
strictions. The SE-ECM can be interpreted as a partial adjustment model with
β2 as long-run income elasticity of money demand, β3 as long-run semi-interest
rate elasticity of money demand, and less restrictive short-run dynamics. The
coefficient β4, however, cannot be interpreted directly.

In practice, the number of cointegration relations and the exogeneity of cer-
tain variables cannot be considered as known. Therefore, the VECM is the
standard framework for empirical money demand analysis. In this framework,
all variables are assumed to be endogenous a priori, and the imposition of a
certain cointegration rank can be justified by statistical tests. The standard
VECM is obtained from a vectorautoregressive (VAR) model

xt = µt +
k∑
i=1

Aixt−i + ut, (6.8)

where xt is a (n × 1)-dimensional vector of endogenous variables, µt contains
deterministic terms like constant and time trend, Ai are (n × n)-dimensional
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coefficient matrices and ut ∼ N(0,Σu) is a serially uncorrelated error term.
Subtracting xt−1 and rearranging terms yields the VECM

∆xt−1 = µt + Πxt−1 +
k−1∑
i=1

Γi∆xt−i + ut. (6.9)

Π and Γi are functions of the Ai. The matrix Π can be decomposed into two
(n × r)-dimensional matrices α and β: Π = αβ′ where α is called adjustment
matrix, β comprises the cointegration vectors, and r is the number of linearly
independent cointegration vectors (cointegration rank). Following Engle and
Granger (1987), a variable is integrated of order d, or I(d), if it has to be
differenced d-times to become stationary. A vector xt is integrated of order
d if the maximum order of integration of the variables in xt is d. A vector
xt is cointegrated, or CI(d, b), if there exists a linear combination β′xt that is
integrated of a lower order (d− b) than xt.

6.2.3 Estimation of Indonesian Money Demand

We use quarterly data from 1990:1 until 2002:3 for our empirical analysis.
The data is not seasonally adjusted and taken from Datastream (gross na-
tional product at 1993 prices Y and long-term interest rate R) and from Bank
Indonesia (money stock M2 M and consumer price index P ). In the follow-
ing, logarithms of the respective variables are indicated by small letters, and
mr = lnM − lnP denotes logarithmic real balances. The data is depicted in
figure 6.1.

Before the appropriate econometric methodology can be chosen, the stochastic
properties of the variables have to be analyzed. Table 6.1 presents the results
of unit root tests for logarithmic real balances mr, logarithmic real GNP y,
logarithmic price level p, and logarithmic long-term interest rate r.

The table 6.1 shows unit root test results for the variables indicated in the first
column. The second column describes deterministic terms included in the test
regression: constant (c), seasonal dummies (s), linear trend (t), and shift and
impulse dummies according to the model c in Perron (1989) (P89c) allowing for
a change in mean and in the slope of a linear trend. The break point is given in
parentheses. Lags denotes the number of lags included in the test regression.
Column CV contains critical values. Three (two) asterisks denote significance
at the 1% (5%) level.
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Figure 6.1: Data

Table 6.1: Unit Root Tests

Variable Deterministic Terms Lags Test Statistic 1/5/10% CV
mr c, t, s, P89c (98:3) 2 –4.55 ∗∗ –4.75 / –4.44 / –4.18
y c, t, s, P89c (98:1) 0 –9.40 ∗∗∗ –4.75 / –4.44 / –4.18
p c, t, s, P89c (98:1) 2 –9.46 ∗∗∗ –4.75 / –4.44 / –4.18
r c, s 2 –4.72 ∗∗∗ –3.57 / –2.92 / –2.60

Because the time series graphs show that there seem to be structural breaks
in real money, GNP and price level, we allow for the possibility of mean shift
and change in the slope of a linear trend in the augmented Dickey-Fuller test
regression. This corresponds to model (c) in Perron (1989), where the critical
values for this type of test are tabulated. In the unit root test for the interest
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Figure 6.2: Fitted Trends for Real Money and Real GNP

rate, only a constant is considered. According to the test results, real money,
real GNP and price level are trend-stationary, that is they do not exhibit a
unit root, and the interest rate is also stationary. These results are quite stable
with respect to the lag length specification. The result of trend-stationarity
is also supported by visual inspection of a fitted trend and the corresponding
trend deviations, see figure 6.2. In the case of real money, the change in the
slope of the linear trend is not significant.

Indonesian money demand is now estimated by OLS using the reduced form
equation 6.4 (sit are centered seasonal dummies, ds denotes a step dummy
switching from zero to one in the respective quarter, di is an impulse dummy
having value one only in the respective quarter, t-values in parantheses):

mrt = 0.531
(6.79)

mrt−1 + 0.470
(4.87)

yt − 0.127
(−6.15)

rt

− 0.438
(−0.84)

− 0.029
(−2.11)

s1t − 0.034
(−2.57)

s2t − 0.036
(−2.77)

s3t

+ 0.174
(3.54)

ds9802t + 0.217
(5.98)

di9801t + 0.112
(5.02)

ds9803t + ut(6.10)

T = 50 (1990:1 - 2002:3) R2 = 0.987 RESET(1) = 0.006 [0.941]
LM(4) = 0.479 [0.751] JB = 0.196 [0.906] ARCH(4) = 0.970 [0.434]

Here JB refers to the Jarque-Bera Test for nonnormality, RESET is the usual
test for general nonlinearity and misspecification, LM(4) denotes a Lagrange-
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Multiplier test for autocorrelation up to order 4, ARCH(4) is a Lagrange-
Multiplier test for autoregressive conditional heteroskedasticity up to order
4. Numbers in brackets are corresponding p-values. Given these diagnostic
statistics, the regression seems to be well specified. There is a mean shift in
98:3 and the impulse dummies capture the fact, that the structural change in
GNP occurs two months before the change in real money. The inflation rate is
not significant and is therefore not included in the equation.

The implied income elasticity of money demand is 0.47/(1–0.53) = 1 and the
interest rate elasticity is –0.13/(1–0.53) = –0.28. These are quite reasonable
magnitudes. Equation (6.10) can be transformed into the following error cor-
rection representation:

∆mrt = −0.47 · (mrt−1 − yt−1 + 0.28rt−1)

+ 0.47∆yt − 0.13∆rt + deterministic terms + ut (6.11)

Stability tests for the real money demand equation (6.10) are depicted in figure
6.3. The Cusum of squares test indicates some instability at the time of the
Asian crises, and the coefficients of lagged real money and GNP seem to change
slightly after the crisis. A possibility to allow for a change in these from 1998
on is two introduce to additional right-hand-side variables: lagged real money
multiplied by the step dummy ds9803 and GNP multiplied by ds9803. The
respective coefficients for the period 1998:3-2002:3 can be obtained by summing
the coefficients of lagged real money and lagged real money times step dummy
and of GNP and GNP times step dummy, respectively. This reveals that the
income elasticity stays approximately constant (0.28/(1–0.70)=0.93 until 98:02
and (0.28+0.39)/(1-0.70+0.32)=0.92) from 98:3 to 2002:3 and that the interest
rate elasticity declines in the second half of the sample from –0.13/(1–0.70)=–
0.43 to –0.13/(1-0.79+0.32)=–0.21:

mrt = 0.697
(7.09)

mrt−1 + 0.281
(2.39)

yt − 0.133
(−6.81)

rt

− 0.322
(−2.54)

mrt−1 · ds9803t + 0.288
(2.63)

yt · ds9803t

+ 0.133
(0.25)

− 0.032
(−2.49)

s1t − 0.041
(−3.18)

s2t − 0.034
(−2.76)

s3t

+ 0.110
(2.04)

ds9802t + 0.194
(5.50)

di9801t + ut (6.12)
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Figure 6.3: Stability Test for the Real Money Demand Equation (6.10)

T = 51 (1990:1 - 2002:3) R2 = 0.989 RESET(1) = 4.108 [0.050]
LM(4) = 0.619 [0.652] JB = 0.428 [0.807] ARCH(4) = 0.408 [0.802]

Accordingly, the absolute adjustment coefficient µ in the error correction rep-
resentation increases from 0.30 to 0.62.

It can be concluded that Indonesian money demand has been surprisingly sta-
ble throughout and after the Asian crisis. A shift in the constant term and
two impulse dummies that correct for the different break points in real money
and real output are sufficient to yield a relatively stable money demand func-
tion with an income elasticity of one and an interest rate elasticity of –0.28.
However, a more flexible specification shows that the adjustment coefficient µ
increases and that the interest rate elasticity decreases after the Asian crisis.
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6.3 Fuzzy Model Identification

6.3.1 Fuzzy Clustering

Ruspini (1969) introduced a notion of fuzzy partition to describe the cluster
structure of a data set and suggested an algorithm to compute the optimum
fuzzy partition. Dunn (1973) generalized the minimum-variance clustering pro-
cedure to a Fuzzy ISODATA clustering technique. Bezdek (1981) generalized
Dunn’s approach to obtain an infinite family of algorithms known as the Fuzzy
C-Means (FCM) algorithm. He generalized the fuzzy objective function by
introducing the weighting exponent m, 1 ≤ m <∞;

Jm(U, V ) =
n∑
k=1

c∑
i=1

(uik)md2(xk, vi), (6.13)

where X = {x1, x2, . . . , xn} ⊂ Rp is a subset of the real p-dimensional vector
space Rp consisted of n observations, U is a randomly fuzzy partition matrix
of X into c parts, vi is the cluster centers in Rp, d(xk, vi) = ‖xk − vi‖ =√

(xk − vi)T (xk − vi) is an inner product induced norm on Rp, uik is referred
to as the grade of membership or belonging of xk to the cluster i. This grade
of membership satisfies the following constraints:

0 ≤ uik ≤ 1, for 1 ≤ i ≤ c, 1 ≤ k ≤ n, (6.14)

0 <
n∑
k=1

uik < n, for 1 ≤ i ≤ c, (6.15)

c∑
i=1

uik = 1, for 1 ≤ k ≤ n. (6.16)

The FCM uses an iterative optimization of the objective function, based on the
weighted similarity measure between xk and the cluster center vi.

More on the steps of the FCM algorithm are discussed in Mucha and Sofyan
(2000).

In practical applications, a validation method to measure the quality of a
clustering result is needed. Its quality depends on many factors, such as the
method of initialization, the choice of the number of classes c, and the clustering
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method. The method of initialization requires a good estimate of the clusters
and its application is dependent, so the cluster validity problem is reduced to
the choice of an optimal number of classes c. Several cluster validity measures
have been developed in the past by Bezdek and Pal (1992).

6.3.2 Takagi-Sugeno Approach

Takagi and Sugeno (1985) formulated the membership function of a fuzzy set A
as A(x), x ∈ X. All the fuzzy sets are associated with linear membership func-
tions. Thus, a membership function is characterized by two parameters giving
the greatest grade 1 and the least grade 0. The truth value of a proposition ”x
is A and y is B” is expressed by

‖x is A and y is B‖ = A(x) ∧B(y)

Based on above definition, the affine Takagi-Sugeno (TS) fuzzy model consists
of rules Ri with the following structure:

If

x is Ai (6.17)

Then

yi = a>i x+ bi, i = 1, 2, ..., r. (6.18)

This structure consists of two parts, namely x is Ai as antecedent part and
yi = a>i x+ bi as consequent part.

Note : x ∈ X ⊂ Rp is a crisp input vector. Ai is a (multidimensional) fuzzy set:
µAi(x) : X → [0, 1], yi ∈ R is an output of the i-th rule, ai ∈ Rp is a parameter
vector, bi is a scalar. The index i = 1, ..., r shows that a given variable is related
to i-th rule. r is the number of rules in the rule base.

Given the output of the individual consequents yi, the global output y of the
Takagi-Sugeno model is computed by using the fuzzy mean formula:

y =
∑r
i=1 βi(x)yi∑r
i=1 βi(x)

(6.19)
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where βi(x) = µAi(x) is the degree of membership or belonging of X into the
fuzzy set Ai.

The conjunctive form of the antecedent 6.17 can be also formulated as follows,

IF x1 is Ai,1 AND ... AND xp is Ai,p THEN yi = a>i x+ bi

with degree of membership or fulfillment

βi(x) = µAi,1(x1) ∧ µAi,2(x2) ∧ ... ∧ µAi,p(xp).

By normalizing this membership degree of rule antecedent with

φi(x) =
βi(x)∑r
j=1 βj(x)

(6.20)

then we can interpret the affine Takagi-Sugeno model as the quasilinear model
with a dependent input parameter (Wolkenhauer, 2001):

y =

(
r∑
i=1

φi(x)a>i

)
x+

r∑
i=1

φi(x)bi = a>(x) + b(x). (6.21)

Usually it is difficult to implement multidimensional fuzzy sets, therefore the
antecedent 6.17 is commonly interpreted as a combination of equations with a
one-dimensional fuzzy set for each variable x.

6.3.3 Model Identification

The basic principle of model identification by product space clustering is to
approximate a non linear regression problem by decomposing it to several local
linear sub-problems described by IF-THEN rules. A comprehensive discussion
can be found in Giles and Draeseke (2001).

The identification and estimation of the fuzzy model used for cases of multi-
variate data as follows, suppose

y = f(x1, x2, ..., xp) + ε

where ε is assumed independent, identical and normally distributed.
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If the error has a mean of zero, then the fuzzy function interprets the conditional
mean of variable output y. Therefore, the assumption now is the use of linear
least square as the basis for analysis.

Step 1: For each xr and y, separately partition n observations of the sample n
into fuzzy clusters cr by using fuzzy clustering (where r = 1, ..., p).

Step 2: Consider all possible combinations of c fuzzy cluster towards the num-
ber of variable input p, where:

c =
k∏
r=1

cr (6.22)

Step 3: Make a model by using data taken from each fuzzy cluster.

yij = βi0 + βi1x1ij + βi2x2ij + ...+ βipxpij + εij (6.23)

where j = 1, ..., n; i = 1, ..., c.

Step 4: Predict the conditional mean of x by using:

ŷk =
∑c
i=1(bi0 + bi1x1k + ...+ bipxpk)wik∑c

i=1 wik
; k = 1, ..., n. (6.24)

where

wik =
p∏
r=1

δijurjk; i = 1, ..., c

δij is a selector that selects a membership value for each fuzzy of j cluster if
the cluster is associated with the i-th (default δij = 1).

The fuzzy predictor of the conditional mean y is a weighted average of linear
predictor based on the fuzzy partition of explanatory variables, with a member-
ship value varying continuously through the sample observations. The effect of
this condition is that the non-linear system can be effectively modelled.

Furthermore, a separately modelling of each fuzzy cluster, including the use of
fuzzy logic having the ”IF” form, input data are found in this region. ”THEN”
is likely to be a predictor of the response variables.

The modelling technique based on fuzzy sets can be clustered in a local mod-
elling method, because it uses partitions of a domain process on a number of
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Indonesian Money Demand
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Two dimensional plot of Indonesian Money Demand with Fuzzy TS vs Time

fuzzy region. In each region of the input space, a rule is defined to specify
models from its output. The rules here are described as a local sub-model of a
system. TakagiSugeno is one of the models used here.

6.3.4 Modelling Indonesian Money Demand

In this section we prepare a model for M2 money demand in Indonesia us-
ing the approach of fuzzy model identification. This constructing model was
based on the three-monthly data taken from 1990:1-2002:III which consisted of
three variables, Real Money Demand (M2), Real GNP (GNP), and Long Term
Interest Rate (r).

The result of fuzzy clustering with the M2 and GNP variables shows the data
formed of three clusters. Of the three clusters, it’s difficult to determine their
real clusters so that we arrange them as the fourth cluster.

On the other hand, a clustering using M2 and r variables perform of 2 clusters.
The intersection of these two clustering stages would result in 4 different clusters
as shown in Table 6.2.

The first and the second clusters, that is the period of 1990:1-1994:3 and 1994:4-
1998:3, show that GNP has a positive effect of money demand, while r is neg-
ative. In the second period, however, the effect of r is not significant. This
phenomenon is consistent with the result gained using the standard economet-
rics method.
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Cluster Observations Beta 0 Beta 1 - GNP Beta 2 - r
(t-value) (t-value) (t-value)

I 1-15 -1.7134 0.5479 -0.2047
(3.402) (5.441) (-4.149)

II 16-31 0.3237 0.7964 -0.0158
(0.330) (3.610) (-0.121)

III 34-39 12.4670 -1.5480 -0.3177
(1.757) (-1.085) (-2.377)

IV 40-51 -0.1038 0.8678 0.1357
(-0.053) (2.183) (0.901)

Table 6.2: Four clusters of Indonesian money demand data

Similar to the result of standard econometrics method, Fuzzy Takagi-Sugeno
approach also performed a coefficient instability during the Asian crisis. Table
6.2 shows that in the third cluster, there is a change in the behavior of the
GNP and r in explaining the model of M2. During the third period, either the
GNP or r has a negative effect toward M2. The effect of r is quite significant
while the effect of GNP is not. Therefore we may conclude that during the
Asian crisis, M2 was more influenced by the changing of r.

The last cluster, that is cluster 4, covers the period of 1999:4-2002:3.In this
period of time, the situation in Indonesia is slowly under control which was
signed by having a new government selected through a democratic general
election held in October 1999. In this period, the elasticity of GNP turned
back to the level before the time of crisis. Here, the GNP has a positive effect
and is significant toward M2. On the other hand, the effect of r seemed to be
weak and is not significant. This result is also consistent with the finding of
the standard econometric one.

6.4 Conclusions

Money demand is generally said to have a functional relationships with the scale
variable (representing the economic activity) and the opportunity of holding
money balances.
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Based on standard econometrics methods, we expect to find equilibrium rela-
tionships among these variables. In this paper, we use not only the standard
econometrics approach, but also implemented a relatively new approach in the
economic analysis called the Fuzzy TakagiSugeno Model.

There was an instability during the Asian crisis, if we observe the situation
before the economic crisis (1990 − 1997). During the crisis (1998− 1999), the
effect of GNP and r seemed to be insignificant. After the end of the asian
crisis, the effect of GNP tended to be constant and the effect of the interest
rate tended to be on the opposite.
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Holtemöller, O. (2004). A Monetary Vector Error Correction Model of the
Euro Area and Implications for Monetary Policy, Empirical Economics,
forthcoming.



Bibliography 123

Lim, G. C. (1993). The Demand for the Components of Broad Money: Error
Correction and Generalized Asset Adjustment System, Applied Economics
25(8): 995–1004.

Lütkepohl, H. and Wolters (Eds)(1999). Money Demand in Europa, Physica,
Heidelberg.

McCandless, G. T. and Weber, W. E. (1995). Some Monetary Facts, Federal
Reserve Bank of Minneapolis Quarterly Review 19: 2-11.

McNown, R. and Wallace, M. S. (1992). Cointegration Test of a Long-Run
Relation between Money Demand and Effective Exchange Rate, Journal
of International Money and Finance 11(1): 107–114.

Mehra, Y. P. (1993). The Stability of the M2 Money Demand Function: Ev-
idence from an Error-Correction Model, Journal of Money, Credit and
Banking 25: 455–460.

Miller, S. M (1991). Monetary Dynamics: An Application of Cointegration
and Error-Correction Modelling, Journal of Money, Credit and Banking
23: 139–168.

Mishkin, F. S. (1995). Symposium on the monetary transmission mechanism,
Journal of Economic Perspectives 9: 3–10.

Miyao, R. (1996). Does a Cointegrating M2 Demand Relation Really Exist in
Japan?, Journal of the Japanese and International Economics 10: 169–
180.

Moosa, I. A. (1992). The Demand for Money in India: A Cointegration Ap-
proach, The Indian Economic Journal 40(1): 101–115.

Mucha, H. J. and Sofyan, H. (2000). Cluster Analysis, in Härdle, W., Klinke,
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7 The exact LR test of the scale in
the gamma family

Milan Stehĺık

7.1 Introduction

An arbitrary speed asymptotics oversize or undersize the test what may not be
acceptable in some fine studies, especially in medicine, finance and physics. In
these areas small samples occurs frequently and testing based on asymptotics
can be misleading. The high efficiency is typical requirement of testing and
exact tests can be asymptotically optimal in the sense of Bahadur, Hodges-
Lehman and Pittman. The class of such statistics is apparently narrow, though
it contains under certain conditions the likelihood ratio (LR) statistics. Now
we are in better situation as statisticians have been in 40s when the one of the
main reasons of asymptotics was the fact that the computation of the quantiles
of exact tests had the unreal time complexity. Nowadays, the implementation
of the special functions to computational environments and symbolic languages
became the common phenomenon. The computational and time complexity of
procedures of the exact and asymptotical is comparable.

Our setup considers univariate random variables y1, y2, . . . , yN distributed ac-
cording to the gamma densities

f(yi|γi) =

 γvi
yv−1
i

Γ(v) e
−γiyi , for yi > 0,

0, for yi ≤ 0.
(7.1)

Here γi > 0, i = 1, ..., N are unknown scale parameters, which are the param-
eters of interest and v > 0 is known shape parameter.

http://ise.wiwi.hu-berlin.de/~stehlik
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Such model has been applied in many disciplines, including queueing systems,
reliability models, and quality control studies.

We consider the exact LR tests of the scale hypothesis

H0 : γ = γ0 versus H1 : γ 6= γ0 (7.2)

in the scale-homogeneous gamma family (i.e. γ1 = ... = γN := γ). Details
can be found in Stehĺık (2000), Stehĺık (2001) and Stehĺık (2002). The general
LR test of the hypothesis (2) is implemented to the XploRe in the quant-
let etgammaexacttest. Because the two special cases of the gamma process,
Poisson and Erlang processes are frequently used, they are implemented in
self-contained quantlets etexpexacttest and eterlangexacttest. The ad-
vantages of the exact tests of the scale in the gamma family are exact levels
of significance (the asymptotical tests are oversized) and exact power. Fur-
thermore, the exact LR tests of the scale in the gamma family are unbiased,
uniformly most powerful (UUMP) tests. The theoretical justification of the
exact LR testing is its asymptotical optimality. For example, the exact LR
test of the scale of the exponential distribution is asymptotically optimal in
the sense of the Bahadur exact slopes.

The chapter is organized as follows. In subchapter Computation the exact tests
in the XploRe we provide the examples of exact testing of the scale parameter.
In subchapter Illustrative examples we discuss and analyze data set from time
processing and field reliability data with missing failure times. To maintain the
continuity of the explanation, some theoretical aspects of the exact LR testing
are included into the Appendices.

The short discussion on the implementation can be found in Appendix Imple-
mentation to the XploRe. The discussion on the asymptotical optimality in the
case of exponentially distributed observations is given in Appendix Asymptot-
ical optimality. Appendix Information and exact testing in the gamma family
briefly explains the informative aspects of the exact LR testing in the gamma
family based on the concept of the ”I-divergence distance” between the obser-
vation and the canonical parameter γ as presented in Pázman (1993).

Oversizing of the asymptotics provides the Table of oversizing of the asymptot-
ical test. Some useful properties of the Lambert W function, which is crucial
function for the implementation of the exact tests is given in Appendix The
Lambert W function.
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7.2 Computation the exact tests in the XploRe

The quantlets etgammaexacttest, etexpexacttest and eterlangexacttest
are implemented to the XploRe. The input of the general quantlet etgamma
exacttest consists of the parameters sample, level, nullpar and shapepar. The
parameter sample inputs the n× 1 data vector x, level inputs the size (level of
significance) of the exact test, nullpar is the input of the value γ0 of the null
hypothesis H0 : γ = γ0 and shapepar inputs the shape parameter of the gamma
distribution. The output consists of the parameters pvalue, testresult, chipvalue
and oversizing. The parameter pvalue outputs the exact p-value of the test,
the test result outputs the statement about the rejection or acceptation of the
null hypothesis. E.g. in the case of rejection this statement has form “H0 is
rejected on the level alpha“. The parameter chipvalue contains the p-value of
the χ2-Wilks asymptotical test and the oversizing contains the oversizing of
the χ2-asymptotics, i.e. the difference of the pvalue and chipvalue.

The following session illustrate the application of the quantlet etgammaexacttest
for exact LR testing of the hypothesis H0 : γ = 0.4 versus H1 : γ 6= 0.4 at
the level of significance α = 0.1 for the data set x = {0.5458, 2.4016, 1.0647,
2.8082, 0.45669, 0.79987, 0.59494} in the model (1) with the shape parameter
equal to 2.3. The libraries stats and nummath must be loaded before the
running of the exact tests.

The result is displayed in Table 7.1.

Table 7.1: Exact LR test H0 : γ = 0.4 vs. H1 : γ 6= 0.4 with α = 0.1

p. value = 1.0002e-06
test result = H0 is rejected on the level alpha
chip value = 8.8401e-07
oversizing = 1.1623e-07

The null hypothesis is rejected on the level α = 0.1, the exact p-value is 1.0002e-
06 and the asymptotical p-value is 8.8401e-07. The exact p-value is computed
from the formula p = 1− FN (−2 lnλ(y)) where

λ(y) =
maxγ∈Γ0

∏N
i=1 f(yi|γi)

maxγ∈Γ1

∏N
i=1 f(yi|γi)

(7.3)
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is the likelihood ratio of the test of the hypothesis (2), Γ0 = {γ0} and Γ1 =
R+ \ Γ0. Function FN is the exact cdf of the Wilks statistics −2 lnλ of the
LR test of the hypothesis (2) under the H0. The following theorem giving the
formula for FN is the corollary of Theorem 4 in Stehĺık (2001).

Theorem 1 The exact cdf of the Wilks statistics −2 lnλ of the LR test of the
hypothesis (2) of the gamma distribution (1) has under the H0 the form

FN (ρ) =
{
FvN (−vNW−1(−e−1− ρ

2vN ))−FvN (−vNW0(−e−1− ρ
2vN )), ρ > 0,

0, ρ ≤ 0.

Here Wk, k = ... − 1, 0, 1, ... is the k-th branch of the Lambert W function
(see Appendix The Lambert W function) and FN is the cdf of the gamma
distribution with the shape parameter N = 1, 2, ... and scale parameter 1. The
Wilks statistics −2 lnλ(y) has under the H0 asymptotically χ2

1-distribution
(Wilks, 1967). The chipvalue is the p-value obtained from the asymptotics,
e.g. p = 1− Fχ2

1
(−2 lnλ(y)) where λ(y) is defined by (3) and Fχ2

1
is the cdf of

the χ2
1-distribution.

7.3 Illustrative examples

7.3.1 Time processing estimation

In this section we give some idea how to analyze the time processing data
given in study Gautam (1999). Much more detailed discussion is given in
Stehĺık (2002). Gautam (1999) studied a typical small scale company which
manufactures a single item on demand and according to the specifications of
the user. Assume that the users can demand only a single unit of the product.
As soon as a demand for a customized item comes in, the company registers the
requirements into a database. The processing begins by scanning the database
according to a first come first served manner and selecting an item to be pro-
cessed. Once the processing is complete, the next item’s processing begins.
Table 7.2 lists the sample processing times in hours.

The following two tasks are of prime concern for the company:
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Table 7.2: The sample processing times in hours

1.9174 1.0866 0.9324 1.7576 0.5757 1.3961 1.3726 1.1121 1.3469 1.7477

1.2796 1.5442 1.3416 1.8200 1.0853 1.4793 0.9549 0.8739 1.1211 1.9341

1.6733 1.5880 1.1860 1.3422 1.6634 1.6364 2.7820 1.3701 1.6089 1.5860

1.1534 1.3417 1.6009 1.6476 1.3069 1.4546 1.7063 1.4398 1.1611 1.1278

2.0458 1.3681 0.9886 1.9371 1.6347 1.3754 2.0093 1.2315 1.4088 1.0767

1.0636 1.8241 1.3653 1.3242 1.5804 1.3875 1.2286 1.2866 1.7617 1.4828

1.6378 0.8287 1.1559 1.1054 1.4677 1.1568 1.6271 1.3273 1.5050 1.4858

1.1695 2.3610 1.3828 2.0455 1.1538 1.0897 1.7877 1.2850 1.3557 2.1030

1.0352 1.6838 1.6230 0.8023 1.6138 1.7363 0.8154 1.1386 2.1088 1.0676

1.5356 1.7195 1.9940 1.7607 1.2447 1.4794 1.1470 1.4041 1.1489 1.7280

• Given the number of orders waiting to be processed, by what time should
the company promise to deliver the product so that company meets the
deadline with the probability p?

• Consider that a job was being processed for the past u hours when the
system breaks down. When the breakdown is fixed, the company would
like to estimate how much longer the processing will take.

One of the probability distributions representing time random variable with
relatively small variation is the Erlang distribution. The family of density
functions

f(y|γ) =
γ(γy)k−1

(k − 1)!
e−γy, y > 0, k = 2, 3, ...

is referred to as the family of Erlang (k, γ) distributions. The length of time
interval required in order to collect k arrivals from a Poisson process is dis-
tributed according to the Erlang distribution with the shape parameter k. The
family of Erlang distributions with the known shape parameter v = k > 1
and an unknown scale parameter γ belongs to the model (1). The quantlets
cdferlang and pdferlang implemented to the XploRe computes the values of
the cdf and pdf of the Erlang distribution with called parameters.

To fit the processing time data as Erlang(k, γ) (Gautam, 1999) estimates the
parameters from the data and test if the estimated distribution fits the data
well. He uses the maximum likelihood estimators (MLEs) k̂ = bm

2

s2 c or bm
2

s2 c+1
and γ̂ = m

s2 and where m and s2 denotes the sample mean and sample variance
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and bxc denotes the greatest integer less then or equal to x. The estima-
tion from the data in Table 1 gives MLEs γ̂ = 11.1992 and k̂ = 16 or 17.
Gautam (1999) use the Kolmogorov-Smirnov (KS) test to test the goodness-
of-fit of the estimated distribution. The KS test states that the null hypoth-
esis cannot be rejected at the level 0.05 in the both Erlang(16, 11.1992) and
Erlang(17, 11.1992) cases. Consider that there are m orders to be processed
when a customer request comes in. Denote X1, ..., Xm+1 the processing times
all according to an Erlang(k, γ). Denote Z the time for the m + 1 jobs to be
completed. We have Z = X1 +X2 + ...+Xm+1 and Z has Erlang(k(m+ 1), γ)
distribution.

Promising a due date

Our problem is, what time should the company promise to deliver the product
so that it meets the deadline with the given probability p (let us say 0.99)? We
have to determine time T such that P{Z ≤ T} = 0.99. We can solve T from
the equation

1− e−γT
k(m+1)−1∑

i=0

(γT )i

i!
= 0.99. (7.4)

In the case of Erlang(16, 11.1992) distributed processing times (the situation
corresponding to the dataset in the Table 1), m = 4 and p = 0.99 we obtain
T = 9.1315 hours.

Assume that the processing time in the company has Erlang distribution with
known shape parameter k = 16 and unknown scale parameter γ. The customer
wants to know the time to deliver and in the case of delay larger than one
hour the company will be penalized. To determine the uncertainty of the
penalization we want to test H0 : T = 9.1315 versus H1 : T 6= 9.1315 at the
level of significance α = 0.05 having large power of this test at the point of
penalization 10.0938 of the alternative.

For γ and T the equality (4) holds, we have the correspondence γ = γ(T ) and
11.1992 = γ(9.1315) and 10.0938 = γ(10.1315) holds. Therefore the corre-
sponding scale testing problem is

H0 : γ = 11.1992 versus H1 : γ 6= 11.1992. (7.5)
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The relevant idea is to test the hypothesis (5) exactly. The asymptotical Wilks
test is oversized and the power is smaller than the exact one. The significance
of this effect can be clearly seen from the Table 3 in Appendix Oversizing of the
asymptotics. The value of the Wilks statistics of the LR test of the hypothesis
(6) is −2 lnλ = 0.14981 and the corresponding p-value is 0.69873. Therefore
the null hypothesis cannot be rejected at the 0.05 significance level. Much
more detailed discussion can be found in Stehĺık (2002), where the exact power
function is derived (in Theorem 1):

The exact power p(γ, α) of the LR test based on the Wilks statistics of the
hypothesis (2) of the Erlang(k, γ) distribution on the level α at the point γ of
the alternative has the form

p(γ, α) = 1−FkN (−kN γ

γ0
W−1(−e−1−

cα,N
2kN )) + FkN (−kN γ

γ0
W0(−e−1−

cα,N
2kN )),(7.6)

where cα,N denotes the critical value of the exact test of the hypothesis (2) on
the level α.

We obtain the exact power p(10.0938, 0.05) = 0.9855. Since the power of our
test is high at the point corresponding to the penalization time, the probability
of penalization is small. The power function p(γ, 0.05) of the LR test of the
hypothesis (5) is for γ ∈ (7, 15) displayed in the Figure 1.

Time to complete after breakdown

Consider that a job was being processed for the past u hours when the system
breaks down. When the breakdown is fixed, the company would like to estimate
how much longer the processing will take. Denote p(t) the probability P{X ≤
u+t|X > u} (X denotes the processing time) that once the breakdown is fixed,
the processing will continue for less than t hours given that the breakdown
occurred u hours after the processing started. It is easy to see that

p(t) = 1− e−γt
∑k−1
i=0

(γ(u+t))i

i!∑k−1
i=0

(γu)i

i!

.

Consider the processing times given from the Table 7.2. Then the processing
time has Erlang (16, 11.1992) distribution. If a system breakdown occurs 1.5
hour after processing starts, then the probability p(0.5) that the processing will
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Table 7.3: Airplane indicator light reliability data

Failures Cumulative operating time(hours)
2 T21 = 51000
9 T91 = 194900
8 T81 = 45300
8 T82 = 112400
6 T61 = 104000
5 T51 = 44800

be complete within 30 minutes after the breakdown is fixed equals to 0.83079.
The application of the exact LR test of the scale would be similar like in the
part Promising a due date.

7.3.2 Estimation with missing time-to-failure information

For the assessment of component reliability, field data has many distinct ad-
vantages (Coit and Jint, 2000). For all of the advantages of the field data,
there are also disadvantages, including incomplete or inaccurate data report-
ing and others. Several of these disadvantages are described in more detail by
Coit, Dey and Jint (1986). The disadvantage to be addressed in Coit and Jint
(2000) is the fact that the individual times-to-failure are often missing. The
data is often only available in the form of r collective failures observed Trj
cumulative hours with no further delineation or detail available (Anon, 1991)
and (Anon, 1997). Quantities r and Trj are known but the individual failure
times are not. Analysts may have many of these merged data records available
for the same component. Table 7.4 presents a data set of this type. Here Trj
is the jth cumulative operating time with r failures, i.e.

Trj = X1 + ...+Xr,

where Xi is the ith time-to-failure.

There has been other research concerned with the use of data with missing at-
tributes. Dey (1982) has developed a simulation model to observe the behavior
of grouped data and test an exponential distribution assumption. Coit and
Dey (1999) have developed and demonstrated a hypothesis test to evaluate an
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exponential distribution assumption when there is missing time-to-failure data.
The grouped exponential data was modelled using a k-Erlang distribution (Coit
and Jint, 2000). The hypothesis test was demonstrated to successfully reject
the exponential distribution when it was not appropriate even without detailed
knowledge of component time-to-failure. Coit and Jint (2000) made following
assumptions:

• Component times-to-failure are iid

• Component time-to-failure are gamma distributed

• Repair times are insignificant compared to operating time

• System repair does not degrade or otherwise affect the reliability of the
unfailed components.

Time to failure distributions

For standard data sets, there are well-known techniques to estimate parameters
for many distributions and types of censoring, and to objectively evaluate the
applicability of these distributions. However, the analysis of reliability data
with missing time-to-failure is a nonstandard problem and it is not addressed
in these references.

Without individual time-to-failure data, it is impossible to fit the data to most
popular distributions (e.g. gamma, Weibull, lognormal) using standard tech-
niques such as MLE. However, the MLE for the exponential distribution with
Type I or II censoring only depends on the number of failures and the cumu-
lative times.

This is a product of the memoryless property associated with the exponential
distribution. The limitations of the available field data and the simplicity of
the exponential MLE have been used to rationalize the exponential distribution
in applications where it would seemingly be a poor choice. the constant hazard
function associated with the exponential distribution is not intuitively appro-
priate for most failure mechanisms which can be attributed to the accumulation
of stress, such as fracture, fatigue, corrosion and wear mechanisms.

Incorrect assumptions of the underlying distribution can have dire consequences.
For many fledging companies, major decisions are made with limited data be-
ing used as rationale. When an incorrect distribution is assumed, particularly
for reasons of convenience, it is particularly dangerous.
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The gamma distribution is flexible distribution that can model many particu-
lar component failure mechanisms. Methods to determine MLE estimates are
available (Lawless, 1982) for Type I, Type II and chronologically grouped fail-
ure data. However, none of the available MLE estimators pertain to the data
with missing failure times.

Gamma-distribution maximum-likelihood estimates

• Distribution of cumulative time-to-failure

Coit and Jint (2000) determine gamma distribution MLEs with missing failure
times. The likelihood function is based on the distribution parameters (γ, v)
and observed r and Trj values rather than times-to-failure and censor times
which are unknown. When time-to-failure Xi is distributed according to the
gamma distribution Gamma(γ, v) then Trj =

∑r
i=1Xi is distributed in ac-

cordance with a related gamma distribution Gamma(γ, rv). Trj is a random
variable depending on specified r. If r is also a random variable, then con-
sider T as the associated cumulative time-to-failure for random r. The density
function for T can be expressed as a sum of conditional terms. We have

fTr (t) = fT (t|r) =
γrvtrv−1

Γ(rv)
e−γt

and

fT (t) =
∞∑
r=1

fT (t|r)P (R = r),

where P (R = r) is the probability that a randomly selected data record includes
r failures.

Consider a specific observed data set with N data records. For each of the N
data records, r and Trj are known. The set of cumulative operating times {Trj}
form a non-homogeneous population that can be modelled using a mixture
model. The Trj variables are associated with different gamma distributions
depending on r with the same scale parameter. Mixture models are gener-
ally used when there is a nonhomogeneous population composed of distinct
subpopulations. The most common situation is when the proportion of each
subpopulation is known or can be estimated, but it is unknown which mem-
bers belong to which subpopulations. The probability density function for a
non-homogeneous population can be expressed as weighted sum of the respec-
tive probability density functions. The weights represent the probability that
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a randomly selected member of the population is from a particular subpopula-
tion. For our problem, the subpopulations are characterized by the number of
failures within the merged data set. Denote nr the number of data records with
exactly r failures. The weights are the probabilities that a randomly selected
Trj from the N data records has r failures. This probability is nr

N . Denote
n = (n1, n2, ..., nm) where m = max{r|nr > 0} is the maximum number of
failures for any data record within a data set and N =

∑m
r=1 nr. Thus we have

fT (t|n) =
1
N

m∑
r=1

nrγ
rvtrv−1

Γ(rv)
e−γt. (7.7)

• Maximum likelihood estimate

A likelihood function for γ and v is based on the observed data and relation
(7). The likelihood function l(v, γ) is expressed as a product of fT (t|n) for the
N data records

l(v, γ) =
m∏
r=1

nr∏
j=1

1
N

m∑
k=1

nkγ
kvT kv−1

rj

Γ(kv)
e−γTrj .

Estimates of v and γ can be obtain using a Newton search to minimize l(v, γ).
An alternative and more preferred likelihood function can be developed by
exploiting the observation that the subpopulations are clearly identified within
the overall population. The alternative likelihood function can be expressed as
the product of the conditional density functions for Trj and fT (t|r) as follows

l2(v, γ) =
m∏
r=1

nr∏
j=1

fT (v, γ|Trj)

and

ln l2(v, γ) = −γMt̄+Mv ln γ +
m∑
r=1

nr∑
j=1

(vr − 1) lnTrj −
m∑
r=1

nr ln Γ(rv), (7.8)

where M =
∑m
r=1 rnr denotes total number of failures associated with all N

data records and t̄ = 1
M

∑m
r=1

∑nr
j=1 Trj is average time-to-failure.

Taking partial derivatives of the log-likelihood function ln l2 gives the equations
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γ̂ =
v̂

t̄
(7.9)

and

M ln(
v

t̄
) +

m∑
r=1

nr∑
j=1

r lnTrj −
m∑
r=1

rnrψ(rv) = 0, (7.10)

where ψ is Euler’s digamma function. The digamma function is in Coit and
Jint (2000) approximated by the equation

ψ(x) = lnx− 1
2x
− 1

12x2
+

1
120x4

− 1
252x6

+ ... (7.11)

Now v̂ can be solved from the equations (10) and (11) using a Newton-Raphson
or bisection search, v̂ is then substituted into equation (9) to determine γ̂. The
resulting gamma estimates should be tested for goodness-of-fit.

• Testing the scale of the failure process

Suppose, that the shape parameter is v and consider the test of the hypothe-
sis (2):

H0 : γ = γ0 versus H1 : γ 6= γ0

about the scale of the failure process. Such testing problem is usual in analysis
of failure processes. Suppose that we have the only one observation Tr1 which
is typical in the case of unsystematic rebooting of some device. Then Tr1
has Gamma(γ, rv) distribution and the optimal test is the exact LR test of
the scale in the gamma family. We use the quantlet etgammaexacttest in
the form etgammaexacttest(x, α, γ0, rv) where x = {Tr1} is data vector. The
power function can be evaluated with the help of the following theorem:

Theorem 2 The exact power p(γ, α) of the LR test based on the Wilks statis-
tics of the hypothesis (2) of the Gamma(v, γ) distribution on the level α at the
point γ of the alternative has the form

p(γ, α) = 1−FvN{−vN
γ

γ0
W−1(−e−1−

cα,N
2vN )}+FvN{−vN

γ

γ0
W0(−e−1−

cα,N
2vN )},
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where cα,N denotes the critical value of the exact test of the hypothesis (2) on
the level α.

Proof. The critical region based on the Wilks statistics of the LR test of the
hypothesis (2) on the level of significance α has the form

Wc = {y ∈ Y : −2 lnλ(y) > c} such that P{Wc|γ = γ0} = α, (7.12)

where Y denotes the sample space. The power p(γ1, α) of the test of the
hypothesis (2) at the point γ1 of the alternative is equal to P{Wc|γ = γ1},
where Wc is defined by (12).

Applying Theorem 4 in (Stehĺık, 2001) we obtain in the case of the Gamma(v, γ)
distributed observations the equality

1−P{Wc|γ = γ1} = FvN{−vN
γ1

γ0
W−1(−e−1−

cα,N
2vN )}−FvN{−vN

γ1

γ0
W0(−e−1−

cα,N
2vN )}.

This completes the proof. �

The testing of the scale of the failure process based on the one observation is
nice example of application of the testing based on ”one measurement” which
accumulate information from more failures. In such situations the exact test
based on the one measurement can be useful.

The other interesting case of scale testing is sample of the form Tr1, Tr2, ..., TrN
where r is fixed number of observed failures. Then Tri, i = 1, ..., N are iid and
Gamma(γ, rv) distributed.

The optimal test of the hypothesis (2) is the exact LR test of the scale in the
gamma family, we use the quantlet etgammaexacttest again.

The exact test for the general form {Tr,j} of sample is much more complicated
and can be found in Stehĺık (2002a).

7.4 Implementation to the XploRe

The cdfs of the Wilks statistics of the LR tests of the scale are written in terms
of the incomplete Gamma function and two branches W0 and W−1 of the LW
function. The branches of the LW function are implemented to the standard
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mathematical computational environments, e.g. Maple, Matlab, Mathematica
and Mathcad. The reason of this implementation is a large diversity of problems
to their the LW gives solution. If the LW is not implemented in some statistical
software (which is the case of the XploRe) we can proceed as follows. Let us
consider the selectors min(S) and max(S), where S is the set of solutions of
the equation x− ln(x) = c, c > 1. Then we have the following relations in the
terms of the Lambert W function (Stehĺık, 2001) for proof :

min(S) = −W0(−e−c)
and

max(S) = −W−1(−e−c).
Practically, we use the numerical solver of the equation x − ln(x) = c. The
problem is that the derivative is unbounded at the zero neighborhood. Thus
the speed methods as Newton-Raphson or modified Newton-Raphson based on
derivative are not applicable. We use the quantlet nmbrentroot.xpl (Č́ıžková,
2003). The nmbrentroot.xpl is the XploRe implementation of the Brent’s
improvement (Press, 1992) of the van Wijngaarden-Dekker method. Brent’s
method joint the advantages of the root bracketing, bisection method and in-
verse quadratic interpolation and this is the way to combine superlinear con-
vergence with the sureness of bisection.

7.5 Asymptotical optimality

The one of the much more interesting theoretical properties of the exact LR
test of the scale of the exponential distribution is its asymptotical optimality
(AO) in the sense of Bahadur, which can be described as follows.

Consider a testing problem H0 : ϑ ∈ Θ0 vs H1 : ϑ ∈ Θ1 \ Θ0, where Θ0 ⊂
Θ1 ⊂ Θ. Further consider sequence T = {TN} of test statistics based on
measurements y1, ..., yN which are iid according to an unknown member of
an family {Pϑ : ϑ ∈ Θ}. We assume that large values of test statistics give
evidence against H0. For ϑ and t denote FN (t, ϑ) := Pϑ{s : TN (s) < t} and
GN (t) := inf{FN (t, ϑ) : ϑ ∈ Θ0}. The quantity Ln(s) = 1−Gn(Tn(s)) is called
the attained level or the p-value. Suppose that for every ϑ ∈ Θ1 the equality

lim
−2 lnLn

n
= cT (ϑ)

holds a.e. Pϑ.
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Then the nonrandom function cT defined on Θ1 is called the Bahadur exact
slope of the sequence T = {Tn}. According to the theorem of Raghavachari
(1970) and Bahadur (1971), the inequality

cT (ϑ) ≤ 2K(ϑ,Θ0) (7.13)

holds for each ϑ ∈ Θ1. Here K(ϑ,Θ0) := inf{K(ϑ, ϑ0) : ϑ0 ∈ Θ0} and K(ϑ, ϑ0)
denotes the Kullback-Leibler information number. If (13) holds with the equal-
ity sign for all ϑ ∈ Θ1, then the sequence T is said to be asymptotically optimal
in the Bahadur sense. The maximization of cT (ϑ) is a nice statistical property,
because the greater the exact slope is, the more one can be convinced that
the rejected null hypothesis is indeed false. The class of such statistics is ap-
parently narrow, though it contains under certain conditions the LR statistics
(Bahadur, 1967) and (Rubĺık, 1989a).

Rubĺık (1989a) proved AO of the LR statistic under regularity condition which
is shown in (Rubĺık, 1989b) to be fulfilled by regular normal, exponential and
Laplace distribution under additional assumption that Θ0 is a closed set and
Θ1 is either closed or open in metric space Θ. For more extensive discussion
on asymptotical optimality see also monograph of Nikitin (1995).

7.6 Information and exact testing in the gamma
family

Model (1) is a regular exponential family (Barndorff-Nielsen, 1978), the suffi-
cient statistics for the canonical parameter γ ∈ Γ has the form t(y) = −y and
Γ = {(γ1, . . . , γN ), γi > 0; i = 1, . . . , N}. The ”covering” property

{t(y) : y ∈ Y } ⊆ {Eγ [t(y)] : γ ∈ Γ}

(Pázman, 1993) together with the relation

Eγ [t(y)] =
∂κ(γ)
∂γ

where κ(γ) = N ln(Γ(v))− v
∑N
i=1 ln(γi) enables us to associate to each value

of t(y) a value γ̂y ∈ Γ which satisfies

∂κ(γ)
∂γ
‖γ=γ̂y = t(y). (7.14)
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The equation (14) follows that γ̂y is the MLE of the canonical parameter γ
in the family (1). By the use of (14) we can define the I-divergence of the
observed vector y in the sense of Pázman (1993):

IN (y, γ) := I(γ̂y, γ).

Here I(γ?, γ) is the Kullback-Leibler divergence between the parameters γ?

and γ. The I-divergence has nice geometrical properties, let us mention only
the Pythagorean relation

I(γ̄, γ) = I(γ̄, γ?) + I(γ?, γ)

for every γ, γ̄, γ? ∈ int(Γ) such that (Eγ̄(t) − Eγ?(t))T (γ? − γ) = 0. The
Pythagorean relation can be used for construction of the MLE density in reg-
ular exponential family, see Pázman (1996) for details.

The I-divergence have also nice statistical consequences. Let us consider the LR
λ1 of the test of the hypothesis (2) and the LR λ2 of the test of the homogeneity
hypothesis H0 : γ1 = ... = γN in the family (1).

Then we have the following interesting relation for every vector of canonical
parameters (γ0, .., γ0) ∈ ΓN :

IN (y, (γ0, .., γ0)) = − lnλ1 + (− lnλ2|γ1 = ... = γN ). (7.15)

Here the variables − lnλ1 and − lnλ2 under the condition H0 : γ1 = ... = γN
are independent. The relation (15) is consequence of the Theorem 4 in Stehĺık
(2001).

7.7 The Lambert W function

The Lambert W function is defined to be the multivalued inverse of the complex
function f(y) = yey.As the equation yey = z has an infinite number of solutions
for each (non-zero) value of z ∈ C,

the Lambert W has an infinite number of branches. Exactly one of these
branches is analytic at 0. Usually this branch is referred to as the principal
branch of the Lambert W and is denoted by W or W0.
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The other branches all have a branch point at 0. These branches are denoted
by Wk where k ∈ Z \ {0}. The principal branch and the pair of branches W−1

and W1 share an order 2 branch point at z = −e−1.

The branch cut dividing these branches is the subset of the real line from −∞
to −e−1 and the values of the branches of the Lambert W on this branch cut
are assigned using the rule of counter-clockwise continuity around the branch
point. This means that W is real-valued for z ∈ (−e−1,∞) and the branch
W−1 is real-valued on the interval (−e−1, 0). For all the branches other than
the principal branch the branch cut dividing them is the negative real axis. The
branches are numbered up and down from the real axis. A detailed discussion
of the branches of the Lambert W can be found in Corless, et.al. (1996).

Since the Lambert W function has many applications in pure and applied math-
ematics, the branches of the LW function are implemented to many mathemat-
ical computational softwares, e.g. the Maple, Matlab, Mathematica and Math-
cad. For more information about the implementation and some computational
aspects (Corless, et.al., 1993).

7.8 Oversizing of the asymptotics

The Wilks statistics −2 lnλ of the LR test of the hypothesis (2) is under H0

asymptotically χ2
1-distributed (Wilks, 1967) and the test based on the asymp-

totics is oversized. The following table gives the oversizing of the asymptotical
test for small samples when the observations are distributed exponentially. Here
α is the size of the test given from the Wilks asymptotics while αe,N is the ex-
act size of the same test. We calculate from the formula αe,N = 1− FN (χ2

α,1).
Here χ2

α,1 denotes (1−α)-quantile of the asymptotical χ2
1-distribution and FN

is the exact cdf of the Wilks statistics −2 lnλ of the LR test of the hypothesis
(2) under the H0. The formula for FN is derived in Stehĺık (2001) and has the
form:

FN (τ) =
{
FN (−NW−1(−e−1− τ

2N ))−FN (−NW0(−e−1− τ
2N )), τ > 0,

0, τ ≤ 0.
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Table 7.4: The exact sizes αe,N

α\N 1 2 3 4 5
0.00001 0.229211e-4 0.178154e-4 0.155230e-4 0.142351e-4 0.134204e-4
0.00002 0.445707e-4 0.347445e-4 0.303720e-4 0.279358e-4 0.264021e-4
0.00005 0.1070863e-3 0.838629e-4 0.736765e-4 0.680620e-4 0.645496e-4
0.0001 0.2073771e-3 0.1630849e-3 0.1439040e-3 0.1334225e-3 0.1268967e-3
0.0002 0.4007327e-3 0.3167122e-3 0.2808525e-3 0.2614285e-3 0.2493896e-3
0.0005 0.9536900e-3 0.7598856e-3 0.6789730e-3 0.6356518e-3 0.6089504e-3
0.001 0.18315866e-2 0.14706397e-2 0.13227325e-2 0.12442198e-2 0.11960162e-2
0.002 0.35061415e-2 0.28417427e-2 0.25749120e-2 0.24344361e-2 0.23484946e-2
0.005 0.82247349e-2 0.67718253e-2 0.62044830e-2 0.59087828e-2 0.57286067e-2
0.01 0.015599286 0.013037809 0.012058871 0.011552053 0.011244013
0.02 0.029448482 0.025065314 0.023424550 0.022579936 0.022067611
0.05 0.067701923 0.059361294 0.056314364 0.054754992 0.053810812
α\N 6 7 8 9 10

0.00001 0.128631e-4 0.124589e-4 0.121533e-4 0.119145e-4 0.117233e-4
0.00002 0.253549e-4 0.245975e-4 0.240255e-4 0.235786e-4 0.232200e-4
0.00005 0.621610e-4 0.604363e-4 0.591357e-4 0.581205e-4 0.573069e-4
0.0001 0.1224689e-3 0.1224689e-3 0.1168726e-3 0.1149965e-3 0.1134937e-3
0.0002 0.2412404e-3 0.2353750e-3 0.2309574e-3 0.2275143e-3 0.2247565e-3
0.0005 0.5909296e-3 0.5779784e-3 0.5682339e-3 0.5606426e-3 0.5545638e-3
0.001 0.11635466e-2 0.1140235e-2 0.11227052e-2 0.11090527e-2 0.10981231e-2
0.002 0.22907016e-2 0.22492459e-2 0.22180864e-2 0.21938248e-2 0.21744048e-2
0.005 0.56076661e-2 0.55209911e-2 0.54558724e-2 0.54051793e-2 0.53646073e-2
0.01 0.0110374652 0.0108895082 0.0107783725 0.0106918635 0.010622626
0.02 0.0217243535 0.0214785418 0.0212939228 0.021150213 0.0210351898
0.05 0.0531785833 0.0527258996 0.0523858952 0.0521212038 0.0519093212
α\N 11 20 30 40 50

0.00001 0.115663e-4 0.108587e-4 0.105711e-4 0.104276e-4 0.103418e-4
0.00002 0.229270e-4 0.216047e-4 0.210675e-4 0.207998e-4 0.206392e-4
0.00005 0.566409e-4 0.536422e-4 0.524229e-4 0.518152e-4 0.514510e-4
0.0001 0.1122631e-3 0.1067253e-3 0.1044757e-3 0.1033529e-3 0.1026806e-3
0.0002 0.2224988e-3 0.2123424e-3 0.2082143e-3 0.2061548e-3 0.2049209e-3
0.0005 0.5495886e-3 0.5272108e-3 0.5181143e-3 0.5135745e-3 0.5108540e-3
0.001 0.10891785e-2 0.10489474e-2 0.10325913e-2 0.10244260e-2 0.10195322e-2
0.002 0.21585122e-2 0.20870295e-2 0.20579594e-2 0.20434441e-2 0.20347421e-2
0.005 0.53314054e-2 0.51820403e-2 0.51212668e-2 0.50909105e-2 0.50727079e-2
0.01 0.0105659642 0.010311006 0.010207222 0.010155366 0.010124268
0.02 0.0209410536 0.00517344 0.020344780 0.020258532 0.020206799
0.05 0.0517358893 0.050954881 0.050636560 0.050477398 0.050381907
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