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Preface

This book is for all those who question assumption. Too often a Finance
101 lecture begins with the immortal words “let us assume markets are fully
efficient” and that’s the end of the discussion when it comes to market
structure. Unfortunately, what follows from then on may look impressive
but like any house — no matter how imposing — built upon a weak founda-
tion, the cracks soon appear. We go back to Finance 101 and question that
initial assumption. In particular, our focus is on the way in which market
“efficiency” - in the sense of how information is imparted into price — can
be better understood. We build the information generation mechanism from
the “ground-up” using bioinformatics as a guide. The analyst’s “idea” and
the “gene” have a lot in common and we feel that some of the more exciting
recent developments in the fields of genomics and bioinformatics have inter-
esting implications for finance thinking — you just need to view the world
through a different lens that’s all.

It is the construction of such a lens that constitutes a large part of this book.
The preliminaries of what we label as the “traditionalist approach” toward
finance versus an emerging challenge of various “new” views will be discussed
in Chapters 2 and 3. However, we have purposefully set aside Chapters 4,
5 and 6 to outline the theoretical foundations of our unique perspective on
Evolutionary Finance. Here the reader will be made progressively more aware of
the strong similarities between biomathematics and financial mathematics —
via the conduit of informational analysis. While an excursion into the formal
theoretical underpinnings of this exciting new field of thought is a necessary
evil for methodically detailing our case, we stress that the onus will remain
very much on what is necessary for the applied rather than pure theory for
theory’s sake.

Indeed, it is the pursuit of the applied aspects of our philosophy that form
the foundations for Chapter 7 — which covers Evolutionary Finance prin-
ciples in practice. As will be seen, virtually no aspect of applied finance will
be left untouched - from asset selection, to strategy choices, to portfolio con-
struction. In fact, as will be explained, we have now leveraged these applied
principles to such an extent that we have developed our own proprietary
Natural Selection™ software platform to assist us in making exceptional (risk
adjusted) return decisions for asset and portfolio construction across an array
of absolute return mandates within our firm - Evolutionary Finance™ Ltd.
In short, Natural Selection™ provides a user-friendly interface for assessing
an interesting array of Evolutionary Finance perspectives — from mapping
the formation of the informational genome of an asset, to the developing of
a step-by-step recommendation for the formation of an Evolutionary Stable
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Preface xv

Strategy, to the construction of an optimal (time-variant weighted) evolution-
ary portfolio. These insights ultimately assist us to better manage drawdown
risk while pursuing exceptional returns in our day-to-day running of funds
and in the provision of research at Evolutionary Finance™ Ltd.

Finally, in Chapter 8 we will covey to the reader what we feel to be the over-
arching nature of our philosophy. Treating the evolution of information as
the outcome of some biological-like molecular process is a powerful concept.
Indeed, humans themselves can be perceived to be information generating
“machines.” Just as we cannot avoid shedding skin, hair etc we also can-
not avoid creating information for each other — whether this is by hopping
on a bus, buying a particular brand of coffee or buying a particular stock.
In this book we focus purely on the financial consequences of the informa-
tion generation “by-product” of human action. We do this by constructing
a framework to better understand the information generation and agglomer-
ation process itself — which ultimately enables us to form far more effective
financial decisions. Subsequently, our tact will be of particular interest to
those investors looking for innovative interpretations of market dynamics —
especially active fund managers and (like ourselves) members of the hedge
fund community. Indeed, up until now a notable omission from the fin-
ance literature has been a comprehensive theory explaining how the various
disparate categories of financial information - technical, fundamental, eco-
nomic and political - somehow come together to form a cohesive whole that,
in turn, drives asset prices. This glaring oversight has been to the chagrin
of many market practitioners who feel the gap between finance theory and
finance practice has become virtually insurmountable. We attempt to unite
these two worlds once more by illustrating how various financial informa-
tion “bytes” come together to form memes, which in turn form themes and
thus drive overall market bullish/bearish sentiment. We believe that a better
understanding of the formation of the contextual fabric of this “informa-
tional genome” helps us to form a superior view as to what dictates asset price
movements on an intra-day, inter-day, weekly, monthly and even across year
basis. Indeed, we argue that by explicitly modeling the biological-like molecu-
lar formation of information in such a way that perhaps therein resides our
greatest contribution to the field of finance — both from a theoretical and
applied perspective alike.

On a presentational note, one of the first things you may have noticed
already in reading the preface to this book is that the entire text — with
the obvious exception of the Acknowledgments — will be written in either
the second or third person. The writer adopts this style in deference to the
collective wisdom of innumerable interactions with like-minded people at
different points across the globe regarding the issue at hand and by way of
tribute to the army of scholars that have preceded us. Without doubt, it is
upon the shoulders of these innumerable giants that the author presently
stands. Whether this has enabled us to see further we leave that for you - the
reader — to judge. We hope you enjoy the book.
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1

Introduction

It is the purpose of this book to introduce the field of bioinformatics to
financial modeling. Why? Well, think of what you are doing. You are read-
ing a book on the way information is imputed within financial markets. In
the process you are absorbing information yourself. Whether you agree or
disagree with what is about to be presented in the ensuing chapters you
cannot help but be affected by it. The human mind displays a voracious
appetite when it comes to seeking out and assimilating new information -
even information that we don’t necessarily agree with. Financial markets are
no different. They display an insatiable appetite for new thoughts and ideas.
In short, financial markets are huge information consuming entities. What
is the most obvious manifestation of their ruminations regarding this vast
information flow? Asset prices. So we ask the obvious question — why then,
up until now, has a comprehensive theory of the actual building blocks of
information been noticeably lacking from the finance literature?

Generally, most standard Economics and Finance texts still have little to
say about “information” in its own right. Indeed, quite often the study of
the role of information within financial markets is treated more as a “means
to an ends” rather than an ends in itself. What discussion there is, gener-
ally revolves around studies of the Efficient Markets Hypothesis (EMH) or
the sterile cost/benefit analysis espoused under the “Information Econom-
ics” banner. Thankfully, all is not lost. The worm is finally starting to turn
and surreptitiously for the past 20 years a quiet revolution has been under-
way within the hallowed halls of academia. The reigning orthodoxy of what
we label as the “traditionalist” school (a viewpoint we will elaborate upon
in the Chapter 2) has come under fire from a new breed of thinking. Full
rationality is out, bounded rationality is in. Representative agent models are
being replaced with heterogeneous systems. Stochastic has been overridden
by deterministic. Analytical solutions are being supplanted by a more com-
putationally orientated approach. Sounds complex? It is. But the good news
is that hand-in-glove with the rise of these “new views” has been a belated
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recognition of the centrality of information to asset price setting. Indeed,
more and more studies are now being published under the collective subject
headings of “incomplete markets,” “information asymmetries” and “artificial
models of the marketplace.” This book aims to add to this emerging literature
by developing a series of building blocks that assist investors by helping them
to understand the actual texture and fabric of information itself. We do this
by focusing on the analogous nature of biological-like molecular replication to
the formation and transmission of ideas — in particular, those ideas expressed
by analysts within the financial community.

So how best to introduce such a novel concept as biological-like molecular
replication of analyst opinions within financial markets? Actually, it is quite
easy. Think of it in these terms. The decoding of the human genome has been
one of the principle mathematical achievements in recent history. The gen-
ome itself is a sequence of letters denoted C, A, G, T that runs over 600,000 A4
pages long — which in book form takes up 270 ft of shelving space. Encoding
such information into binary form has allowed the development of soph-
isticated mathematical techniques to better understand this extremely long
informational stream — particularly the detection of key sequences. So too
can financial market information be encoded into a similar format so that
we can better understand what is initially a dauntingly large information-set.
The beauty of such an approach is that the encoding can take place irrespec-
tive of whether the original information is from a technical, fundamental,
economic or political standpoint. In one fell swoop we thus have a unified
theory of information inputs into investor decision-making. Indeed, just as
it is possible to build a genomic sequence to describe each and every organ-
ism phenotype, we can just as easily build a “market information” genomic
sequence to accompany each and every “asset price phenotype.”

As will be demonstrated in the ensuing pages, we believe market “themes”
are made up of component “memes” which in turn are made up of inform-
ational “bytes.” This occurs in much the same fashion that DNA is made
up of genes which in turn are made up of chemical bases (C, A, G, T). The
mathematical building blocks of both approaches remain the same. Indeed
the key objective within both approaches remains the same as well — the
detection of those deterministic binary sequences that ultimately have a
bearing upon phenotype. In the case of biology, it is the phenotype of
an organism (its appearance). In the case of finance, it is the phenotype
of an asset (its price). Consequently, it is the task of Chapters 2 and 3 of
this book to initially lay the foundations for both traditionalist and “new”
views of finance before moving on to Chapter 4 where we describe how the
sequencing of byte, meme and theme informational building blocks actu-
ally determine asset price dynamics. In doing so, it is incumbent upon
us to present a framework where an infinite stream of such information
is generated willingly by the analyst community. We do this in Chapter 5
by developing a fully endogenized model of intertemporal information on



Introduction 3

“consumption and production” within financial markets. The net outcome
of our labors is a structure that not only describes the insatiable demand for
new themes and ideas by investors (which is supplied by a veritable army of
analysts — as identified by a “representative” individual - who each manufac-
ture information bytes) but our framework also identifies how information
comes together in an evolutionary/biological-like fashion to form larger
sequences — memes, themes and even overall market sentiment. It is these
informational sequences which then, in turn, determine asset prices in a
meaningful way. Ultimately, this has implications for the distributional form
of asset prices as well — a point which will be discussed at some length in
Chapter 6.

Ergo, a large portion of what is to follow is primarily orientated toward
building a revolutionary new theoretical framework for understanding the
role of information within financial markets. Certainly we do not abide by
the traditionalist finance philosophy that information (and therefore asset
prices) should be treated as though it is the outcome of some random num-
ber generation process. Indeed, the contrast between our highly structured
evolutionary/biological-like approach toward information and the “random
number generator machine” model espoused under the traditionalist finance
framework could not be more different (Figure 1.1).

The Traditionalist model

(A sterile petri-dish informational Our model

(An information/analyst ecology)

environ)
Interdependent information
White noise (IID) information genome
input sequence input Economically justifiable
demand for a diverse
array of analyst (strategy
guided) opinions
A “fair-game” Anonlinear | heterogeneous ability _,
market feedback market
process
White noise (Gaussian form) An interdependent price
asset price output (Time-variant Evolutionary

distributional form) output

Figure 1.1 Their view versus our view on information within financial markets
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So what to call our revolutionary evolutionary approach toward the treat-
ment of information within financial markets? We label our style of analysis
“Evolutionary Finance” in attempt to encapsulate the necessary elements of
our cross-disciplinary “finance meets science” methodology.! The founda-
tions of our Evolutionary Finance paradigm should be seen to be centered
on the biological-like microfoundations of the way information is actually
generated, interpreted and imparted within financial markets. It is this basic
criterion that differentiates our Evolutionary Finance approach from mod-
els of a more traditionalist finance nature and even the “new” finance views
that will be elaborated upon in greater detail in Chapter 3. Indeed, we would
argue that the basic charter of Evolutionary Finance is to answer some fairly
fundamental questions that as yet go unanswered within the finance sphere
(or at least, are not explained by an all-encompassing model such as ours).
How does information emerge and why do investors pay for it to emerge?
How do the various components of what investors come to perceive to be
“information” somehow bolt together to form memes, themes and overall
market bullish/bearish sentiment? Are there any feedbacks to be considered
in such a process? All are worthy questions for understanding the potentially
complex nonlinear dynamics that can manifest between market information
and asset prices. We argue that our own perspective on Evolutionary Finance
develops a framework to better answer these fundamental questions and it is
here that we feel that our greatest contribution resides.

But all this would come to naught had there not been an applied aspect to
our work. When it comes to the earlier studies examining the link between
information and asset prices, the typical approach has been to either under-
take a piecemeal analysis via modeling specific interactions under various
stylized frameworks, or alternately at the holistic level, treating inform-
ation (and therefore asset price growth) as though it is the outcome of
some stochastic random process. Our conjecture is to wholeheartedly rebut
this claim. The reason why information in financial markets has up until
now been treated as though it were the outcome of some random num-
ber generator is that the deterministic foundations of the production and

1 We are not alone in coining the phrase “Evolutionary Finance.” Others, princip-
ally Professor Thorsten Hens from the University of Zurich, Professor Blake LeBaron
from the University of Wisconsin-Madison and Professor Michael Dempster from the
University of Cambridge have somewhat interchangeably used the term to describe the
use of “evolutionary dynamics” (mutation and selection) in the study of the evolution
of trading strategies and the evolution of financial innovations. If anything, our defin-
ition of Evolutionary Finance is even more broad-ranging than that of our forebears
given our focus on the centrality of (biologically like determined) information to most
financial market decision-making — and not just the formation of trading strategies in
a manner highly sympathetic to the concept of Genetic Algorithms/Genetic Program-
ming. That said, without doubt, our work benefits immensely from the insights of
these pioneers in this exciting new field of finance.
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consumption of information - along with the way such information neces-
sarily bolts together — have been poorly understood. Needless to say, the
applied aspects of our methodology vis-a-vis those that have come before
this book could not be more markedly different.

In particular, we fully support the notion of active investing. Our founda-
tion assumption is that we live in an informationally imperfect world where
investors actively search for the “truth” about the informational determin-
ants of a particular asset’s price. How is this search conducted? For starters, a
considerable portion of time and effort (along with a great deal of money) is
devoted to the production and gathering of information itself. Active invest-
ment institutions — whether they reside on the “buy-side” or “sell-side” —
collectively employ tens of thousands of analysts, economists, strategists and
market technicians whose primary goal is to garner that all important (ini-
tially private) information “edge” — an “edge” that they believe is not yet
reflected in asset prices. Unfortunately, up until now, an all-encompassing
theory as to how these various elements of information - technical, funda-
mental, economic and political - somehow bolt together to form a cohesive
whole when percolating from private to public realms has been notable by
its absence from the literature. It is this “informational building” process
that drives asset prices — not some random number generator. Consequently,
while most earlier theorists — especially those theorists of a traditionalist
finance ilk — have tended to judge harshly alpha-seeking practitioners, our
approach is the opposite — we actually condone active investing behavior
wholeheartedly. By doing so we hope to bridge the veritable chasm that
has arisen between a large portion of the theoretical and applied aspects
of finance simply because of the harsh judgment allotted to active investing
by these earlier (traditionalist based) theoretical studies. It is our intention
to right this wrong primarily through a better understanding of the pro-
cess of information building itself and importantly, how this interacts with
asset prices.

One benefit of our approach is that we are thus able to form a better under-
standing of the mechanics underlying the strategies of both analysts and
investors alike. Seeing yourself not as a solitary entity but rather as an active
agent who generates and absorbs information (either consciously or uncon-
sciously) as part of a cohesive whole is a powerful concept. Recognizing one’s
role within this information “ecology” is therefore of crucial significance
for sustained investment success.? Identifying how strategies evolve from one
winning strategy to another as particular investment themes are being built,
identifying the leading memes or even information bytes in this process so
as to better forecast the emergence of winning strategies, or even recogniz-
ing the power of one’s actions should the market anoint you as a “dominant
player” in the information hierarchy (i.e., as the likely initiation source of

2 Farmer (1998) also refers to the “ecology” of financial markets.
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new winning themes) are all crucial aspects of day-to-day investing covered
by our Evolutionary Finance approach. Indeed, as will be discussed at length
in Chapter 4, investors appear to interpret information via a mechanism that
can be regarded as being highly analogous to the biological-like process of
molecular attraction that we use as a modeling framework.? New information
is initially encoded and then associated and assimilated within the investor’s
mind so that an interpretation can be formed from the sum of all information
as to the future direction of asset prices. This algorithmic sequence of events
actually mirrors the way information is “built” by the analyst community —
thus opening the door for strategic behavior on behalf of enterprising ana-
lysts. Understanding this process is therefore crucial to any active investor
looking to maintain their investment performance over the longer term.

While on the topic of the longer term, our Evolutionary Finance approach
is particularly useful for identifying how information and institutions evolve
symbiotically together through time. Looking at the world through an Evol-
utionary Finance lens quickly reveals just how vast a proportion of our
present market institutions bear some form of informational role within
our evolutionary/molecular-based information context. Investment banks
and fund managers produce information, news services and salespeople dis-
tribute information, regulators monitor the dispersal of information and
assess its incorporation into asset prices — it seems everybody has some
form of an informational responsibility. Without doubt, with this responsib-
ility also goes the necessary realization that one’s informational role is itself
symbiotic - the institutions that supply and nurture information evolve hand-
in-glove with the evolution of information itself. There is little doubt that
with the growing sophistication of financial instruments and analyst advice
regarding these instruments, so too does our financial institutional infra-
structure evolve into a more complex array of entities. The fact that market
participants can better monitor, understand and (hopefully) predict such
change under our Evolutionary Finance framework bodes well for the ongo-
ing success of those who pursue our revolutionary viewpoint. Given this
all-encompassing nature of information within financial markets we thus
ask the obvious question — why hasn’t someone previously attempted to
form a better interpretation of this byte-to-meme, meme-to-theme informa-
tion construction and interpretation process through the development of
a comprehensive framework that actually models the building blocks of
information itself? This appears to be a glaring oversight by finance theorists —
at least up until now.

3 This should not come as a surprise as both these fundamental aspects of information
are the two sides of the same ledger — one is supply, one is demand. Both therefore have
a reinforcing effect in shaping the outcome of the other - as the way we “think” about
the world (informational demand) ultimately influences the format of the resources
we use to interpret the world (informational supply).
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But the benefits do not stop here. As will be explained in Chapters 6
and 7, our methodology also has implications for an array of applied fin-
ancial engineering principles - including portfolio construction. Much of
“Modern” Portfolio Theory (MPT) as it presently stands is nearly 50 years
old. Over this course of time there has been little in the way of adaptation
or change to the basic foundations of mean-variance optimization between
risk and return for portfolio derivation.* Our Evolutionary Finance approach
strikes at the very heart of MPT by questioning the distributional form of
asset prices that implicitly underlies this procedure. Ironically, the Gaus-
sian distributional form that constitutes the foundations of MPT assumes
that information arrival is a “random” event and therefore asset prices too
evolve in a random fashion - an assumption we will amplify in considerable
detail in the next chapter.> Any role for the active investor under such a scen-
ario is severely limited since it is assumed there can be no “informational
edge” gained from the subsidization of private information “manufacture”
by analysts. Rather, it is assumed active investors can only exploit short-term
informational “inefficiencies” and their performance in this role is mixed
at best.

As stated earlier, our Evolutionary Finance approach totally refutes this
claim. Indeed, we argue that there is a crucial role for the creation of “alpha-
generating” information by the analyst community and that the distribu-
tional form of asset prices — like information itself — evolves through time in
a deterministic fashion as (analyst generated) new themes replace outmoded
notions. This evolutionary (information-driven) process sometimes occurs
gradually, sometimes violently, but always there will be implications for the
way asset prices behave as they are effectively skewed from one end of the
return spectrum to another. In fact, we use our all-encompassing evolutionary
model of the marketplace in the applied sense to predict how key informa-
tion bytes (at times, disseminated by “seer analysts”) generate an information
contagion/coagulation process that results in the generation of emergent
memes, themes and even shifts in overall market sentiment. By doing so,
we are thus able to better predict the evolution of the time-dependent dis-
tributional form of asset prices in response to this biological-like molecular
formation of information. This informationally driven/deterministic micro-
foundation approach toward the distributional form of asset prices represents

4The obvious exceptions here are resampling techniques and the introduction of
alternate distributional forms, for example, truncated Levy — see Chapter 6 for more
details.

STt is ironic because a plethora of active investors use MPT to construct “optimal”
portfolios but in doing so they are using a procedure that recommends an investing
stance that is in obvious contraction to what they are doing (in other words, in all but
exceptional circumstances, passive investing). Indeed, it is on this issue of the degree of
market efficiency underlying MPT that Markowitz and Sharpe still differ — eventhough
both shared the Nobel prize for the concept.
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a complete watershed in thinking as to how to best construct an optimal port-
folio of assets. Indeed, as we will demonstrate, our approach affects many
preexisting “best practice” financial engineering techniques.

So in summary, we are both supportive of the notion of active investing
and we also provide some guide as to how one should do so in an inform-
ation driven market. To develop our case, we devise an array of techniques
that in many respects supercede the prevailing (traditionalist based) “received
wisdom” financial engineering “best practice” methods. What’s more, we
actually identify the implications of our own advice by assessing how an
army of active investors all generating and absorbing information affects
both the performance and the distributional form of asset prices. It is through
such a comprehensive framework that we are able to construct optimal time-
dependent investment recommendations and portfolio structures across a
diverse array of assets and informational environs - in essence, a new way of
thinking for a new way of interpreting information within financial markets.

Finally in closing our introductory chapter, perhaps it is time to play
devil’s advocate and, ask is our evolutionary perspective within financial
markets necessarily a “new view” after all? One field of great significance
in “evolutionary” type thinking within the economics/finance sphere can
be traced back to the early twentieth-century economist Joseph Schumpeter
and the Austrian School of thought.® This field - now labeled “Evolutionary
Economics” — concentrates on the way in which economies grow and evolve
through time. For our purposes, apart from the notion of “equilibrium” itself
being a time-dependent concept, what we find especially appealing from
this body of thought is its notion of evolutionary institutional change - a
topic we have briefly touched upon in this chapter and will elaborate upon
in some detail in the final chapter of this book.” However, what differenti-
ates our approach from this earlier analysis is our focus on the informational
aspect of this evolutionary-type thinking. Our interpretations of the sym-
biotic evolution of information and institutions form a key aspect of our
long-term thinking as to the development of successful strategies for market
participants — whether they are in an information creation or interpretation
role. What is particularly encouraging is that within the field of finance itself
we are now able to develop this concept in much greater detail thanks to
the recent advances within the field of bioinformatics. These mathematical
advances allow us to better detect the emergence of those key sequences of
information that are likely to have not only short-term price impacts but also
long-term institutional change impacts as well. As we have briefly touched
upon in this chapter, our results have remarkable implications for finance
as it is practiced today — both from a theoretical and applied perspective.

6See Schumpeter (1939). For an excellent discussion of the earlier influences on
Austrian thought, refer to Hodgson (1996).
7 See Nelson and Winter (1982) for instance.
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So while asset prices may seem to bob up and down like flotsam in a sea of
information, we actually make sense of this information for the formation of
more elaborate and efficacious strategies for active market participants — and
for the commensurate construction of their evolutionary portfolios. To con-
clude, you may not agree with everything that is about to be presented in the
following pages, but without doubt it will certainly shakeup one’s notions as
to how financial markets really work.



2
The “Old” View of Finance

Up until recently, one could look under “information” in the index section
of any major financial textbook and be genuinely surprised at the paucity
of references. Why? Quite often information was taken as a “given,” an
exogenous occurrence that undoubtedly affects market behavior but alas
remained largely unexplained. More recently, information has been moved
closer toward center stage with a plethora of studies now manifesting in the
field of “informational asymmetries” and “incomplete markets.”! Still, even
in these studies, “information” itself is mostly treated as an intangible com-
modity with little or no attempt to understand its underlying attributes or the
forces that govern them. It is our objective to put right this somewhat alarm-
ing oversight and bring information analysis firmly into the mainstream of
finance thinking. However, before doing this let us at first examine what little
information there is on “information” within the existing finance literature.

2.1 The efficient markets hypothesis: The traditional (albeit
incomplete) standard-bearer for information assessment

The traditional benchmark for interpretations as to the way informa-
tion is imparted within financial markets has been the Efficient Markets
Hypothesis — or “EMH" as it is affectionately known by finance theorists.
EMH comes in three separate guises as laid out by Fama (1970).2

Strong EMH. It specifies that asset prices fully reflect all information from
public and private sources at each and every point in time. Obviously, a
Strong EMH interpretation as to the way information is imparted assumes

1 See, for example, Brunnermeier (2001) on the presence of asymmetric information
and Hirshleifer and Riley (1992) for the link between information and uncertainty.

2 The term “efficient market hypothesis” was coined by Harry Roberts (1967) but since
Robert’s paper was never published, it was Fama’s (1970) discussion that subsequently
became renown within finance circles.

10
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no “insider” information is present, that no one investor has monopolistic
access to price sensitive information or no one investor has “superior” abil-
ity. The obvious applied implication of such a purview is that investors
cannot consistently make “above normal” profits from trading with market
information - there is little point in trying to “time” the market or actively
invest. Prices are assumed to adjust to new information (both private and
public) instantaneously. Furthermore, many argue that the Strong EMH belief
structure assumes that private information is effectively costless (e.g., Reilly
and Brown (1997)) — a point we will elaborate upon in greater detail in
Section 2.3.

Weak EMH. It assumes that current asset prices reflect only all relevant asset
market information. What precisely does this mean? Asset market inform-
ation includes historical prices, market-positioning data, rates of return,
volatility and so on. Basically, the Weak EMH definition implies that asset
prices reflect all information that has already been generated within the mar-
ketplace. The applied implication of this belief structure is that investors
are able to generate excess return (“above normal” profit) by searching for
private information that is not presently in the marketplace and acting upon
this information by subsequently positioning for the ensuing excess return as
the information percolates from the private to public arena. In other words,
Weak EMH assumes that the speed of information dissemination is slow.
Obviously this purview is more supportive of our biological-based evolution-
ary approach toward information generation and dispersal than Strong EMH
(which, as will be explained later, is more supportive of what we label as the
traditionalist finance viewpoint).?

Semi-Strong EMH. This is a sort of a “half-way house” between the Strong
and Weak versions of EMH - a “compromise” so to speak. The Semi-Strong
definition of EMH encapsulates the conditions of Weak EMH but adds a more
onerous timing element (or “speed” condition) in the sense that it is assumed
asset prices adjust rapidly to the release of all market sensitive information.
Under this definition, investors can still make profits by engaging in the
genetic-like production and then biological-like dispersal of (initially private)
information and then adroitly positioning themselves for the (hopefully)
enthused take-up and subsequent rapid dissemination of their insights into
the wider marketplace — but in pursuing such active return it is very much a
case of the “quick and the dead.”

All this may seem like a bad case of semantics (most definitions are) but
it is important for our purposes to note that the distinction between the

3 Also it will be explained a little later, institutionally there appears to a reasonable
amount of support for the Weak EMH approach toward information given the vast
array of investment advisory institutions all with their associated army of analysts
whose primary purpose is to produce private information.
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various forms of EMH rests almost entirely upon perceptions regarding the
flow of information — its cost, its speed and (somewhat related) the ability
of investors to accurately interpret this information.* That is why we find
the paucity of references within the greater body of finance literature as
to a more in-depth study of the underlying characteristics of information
so perplexing. As we will explain in much greater detail in the ensuing
chapters, it is these “liquidity” aspects of information that are perhaps best
explained via a biological-like molecular building block analogy - a line of
thought we will pursue in great depth. In fact, it is our evolutionary inform-
ation building blocks of “bytes,” “memes” and “themes” and the way they
affect the “liquidity” aspects of information that ultimately determines how
close a particular market’s structure replicates the perfection outlined by a
“Strong” version of EMH. Should investors have perfect foresight as to the
way such information is formed, then this purview would validate what we
label as the “Strong EMH/traditionalist” viewpoint of the way financial mar-
kets operate — a view we might add that has contributed significantly to the
virtual ignoring of the importance of information analysis in its own right
(see Sections 2.2-2.5 for detailed explanations as to why). That said, it is hard
to argue for such a pro-Strong EMH stance when even much of the existing
finance literature does not appear to understand how the microfoundation
component parts of information necessarily bind together to form a cohesive
whole. But more on this later.

Subsequently, to conclude this section, up until now rightly or wrongly
(but mostly wrongly) “information” and “market efficiency” have been
used somewhat interchangeably within the greater body of (traditionalist
dominated) finance literature. This is simply because (as stated earlier) the
underlying characteristics of information itself were taken as a “given” — in
effect, “information” in its own right was treated as an intangible commo-
dity. What little attempt there has been at “information analysis” per se
has been effectively buried under the collective weight of “market effi-
ciency” analysis — part the way toward a greater understanding of the drivers
between information and the markets, but by no means a complete model
(and certainly incomplete when it comes to understanding the building
block frictions that generate the divergences from the Strong EMH purview).
It is our objective to better understand these “frictions” thanks to a bet-
ter (evolutionary-based) framework for modeling the way financial market
information actually comes together into a meaningful form. In doing so we
hope to put right this shortcoming within the existing literature and remove
the present annoying tendency for many finance texts to refer readers to “see
Efficient Markets Hypothesis” or something of the like under index searches
for “Information.”®

4Such are the “frictions” of markets as Lo and MacKinlay (1999) describe them.
5 For instance, the wide selling investment text Reilly and Brown (1997) falls into this
trap in a considerable portion of its referencing under “Information.”
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2.2 Alittle more on the link between
the theory and the applied

Before moving on, readers unfamiliar with the applied aspects of
contemporary finance theory, should note that — as intimated in the various
definitions of EMH in the previous section - the assumption as to what form
of market efficiency necessarily prevails within the market at a given point
in time is pivotal in the formation of one’s viewpoint as to what constitutes
“optimal” investment decision-making. For example, a belief in the “strong”
version of EMH implies that there is little role for “active” investment man-
agement. Rather, such a mindset advocates a more “passive” investment
philosophy of simply ensuring one’s existing portfolio best replicates the
present “market” portfolio — as commensurate with your risk preference.

Sounds a little extreme doesn’t it? Still, we should ask — has such a belief
structure had much of an influence in the applied world? The answer is —
absolutely. In fact, one could go as far as to say that (surprisingly) Strong
EMH has had a “big bang” impact in the inevitable conversion of finance
theory into finance practice - especially from a financial engineering stand-
point. Not only has the (somewhat limited) characterization of information
flow under Strong EMH been responsible for advocating the “market” port-
folio as the optimum solution for all investment decision-making — and
subsequently given rise to the plethora of “portfolio indexing” funds - but it
(via the conduit of Gaussian form) also forms the basis of many an elaborate
extension of finance theory into the applied financial engineering realm as
well. This includes such models as CAPM (Capital Asset Pricing Model), VaR
(Value at Risk), Black-Scholes option pricing and even the various guises of
fixed income factor models. Indeed, given this unerring association between
Strong EMH and “standard” financial engineering methods within the greater
body of existing (traditionalist dominated) finance literature, it can be argued
that Strong EMH forms the very foundation (some would say a weak founda-
tion) of what we witness as financial engineering’s “best practice” today. Ergo,
itis not surprising that our Evolutionary Finance purview has the potential to
have significant ramifications for a wide field of finance theory thanks to its
more comprehensive understanding of the actual building blocks of financial
information itself (Figure 2.1).

Obviously given the above impressive edifice of (traditionalist) finance lit-
erature, we certainly have our work cut out for us. That said, apart from
our approach, has there been any other form of rebuttal to date to the
Strong EMH/traditional finance viewpoint? Is there any additional contrarian
voice supporting our own perspective? Again, the answer is — absolutely. For
starters, it is interesting to note that purely from a practitioner’s standpoint
that structurally much of the prevailing financial system sits institution-
ally at odds with the Strong EMH/traditionalist mindset. As pointed out in
Chapter 1 and as practitioners within financial markets will readily testify,
a large portion of the existing institutional fabric of what we have come
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Figure 2.1 The strong EMH/traditionalist financial engineering edifice

to regard as the “financial system” is devoted to the production and dis-
semination of (initially) private information which then percolates into the
public realm. This sits totally at odds with the Strong EMH/traditionalist
belief structure. Investment research, financial news providers, active fund
managers, hedge fund managers and a significant proportion of sales teams
within the broker/dealer community all fall under this bailiwick and are
thus guilty as charged when it comes to violating Strong EMH/traditionalist
notions. Indeed, the implication of this unabashed willingness of erstwhile
rational investors to fund such activities intimates a significant difference
exists between what is effectively assumed by the Strong EMH/traditionalist
viewpoint and what actually applies in the “real world.” In short, it appears
that it takes time for private information to percolate into the public arena
simply because the biological-like molecular agglomeration of information is
(by definition) a non-instantaneous process. Consequently the implications
for “optimal” investment decision-making (and for financial engineering
“best practice”) are very much different in the “real world” to the theor-
etical purity of the Strong EMH/traditionalist utopia. We will dwell longer
on the issue of rational investors funding private information manufacture
in the following section but suffice to say at this stage that the obvious dif-
ference between theory and application in the finance world could explain
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a large portion of the present disillusionment expressed by practitioners with
the endless reams of (traditionalist-based) research being published by the
academic community.

Given that a dichotomy exists between private and public information
thanks to the time it takes for financial information to agglomerate together
in a biological-like molecular fashion (and the fact that investors cannot
always perfectly predict the outcome of this process and so circumvent the
evolutionary timeframe over which this process occurs) then one had bet-
ter get on the “right side” of the information flow to prosper - or even,
survive. Positioning to be an early recipient of new market sensitive inform-
ation under such circumstances — or even better, to engage in the production
and then dispersal of such information appears to be a sure route toward
that all-elusive alpha that active investors so willingly covet. Certainly this
provides the best mechanism via which to outperform one’s peers. Hence,
we again come back to the investor rationality argument. Why do so many
Wall Street and City investment banks (and active fund managers for that
matter) pay what appear to be huge sums of money to “star analysts” whose
ultimate goal is to beat the market? Answer: it is the inherent belief that
these star analysts have the ability to add “alpha” via the timely manufac-
ture and release of (private) information into the public realm.® To summarize
our arguments, we outline in Figure 2.2 (by way of diagrammatical analysis)
a market efficiency spectrum that differentiates Strong/Semi-Strong/Weak
EMH views from one another, the concurrent private/public information dis-
tinction that accompanies each of these market efficiency categories, and the
“optimal” investment strategy that applies in each circumstance.”

61In the case of active fund managers, this “informational release” is generally through
the price mechanism as their positioning ultimately will have a market impact -
indeed, some may even encourage rumor in the market once they are advantageously
positioned. We will elaborate upon such principles in more detail in Chapter 7.
/Note, it is important to stress here that we are not effectively espousing insider
trading - in the sense that individuals who have privileged access to information pur-
posefully exclude this information from the public until they can trade on it — as an
embodiment of “private” information. Rather, what we are identifying is the more
“law-abiding” pursuit of private information “manufacture.” As Kirzner (1979) in his
analysis of the reward for entrepreneurial behavior would no doubt approve, those
who have the skills and the models to make use of what is effectively public inform-
ation and convert this into much prized private information justly deserve the spoils
afforded to them in terms of economic rent. Do analysts actually earn an “economic
rent” (or “alpha” in investing parlance) for investors who use their recommendations?
Some of the cynics would argue no - especially post the chastened investor experience
of the early 2000s bear market in equities — but recent research by Barber et al. (2001),
Krische and Lee (2001) and Jha et al. (2003) demonstrates that analyst recommend-
ations do indeed add value to the portfolios of those investors who care to take on
board the advice.
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Figure 2.2 The market efficiency spectrum and optimal investor behavior

Needless to say, it is important to highlight that it should be necessary for
all investors to make a judicial assessment of information characteristics —
and by default, market efficiency — before they decide upon their investment
style and enter the market. Unfortunately, as mentioned earlier, up until
now, the amount of analysis on “information” in its own right within the
field of finance has mostly been confined to studies of EMH and not in under-
standing better the actual fabric and texture of information itself. In part, the
emerging field of information asymmetries goes some way toward address-
ing some of these problems but it must be said that really up until now there
has been no true formal framework for a thorough analysis of the actual
determinants of what investors come to perceive as “information” and in
particular, the biological-like microfoundation elements that come to gov-
ern its creation, agglomeration and speed of dissemination. This is where
our evolutionary framework for information analysis comes to the fore. But
before exploring our thoughts in greater detail, it is necessary to do a little
more justice to the EMH framework by highlighting the additional struc-
tures that have been put in place to better understand the principles behind
the various definitions outlined by Fama (1970) and summarized earlier in
Section 2.1.
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2.3 Cost, ability and speed: Important
information determinants

Apart from a three-part series of definitions, is there anything more to the
formalized framework of EMH and its link to information analysis? To help
clarify his thoughts, Fama (1970) found it best to augment his definitions
with the aid of a simple model. Under the principles of a “fair-game” Fama
argued that, market participants of similar financial ability (provided they
have equal access to information) cause the market price and the expected
price of any asset to converge. In a sense, everyone comes to roughly the same
conclusion as to the correct price of an asset when presented with the same
information. As a consequence — consistent with our discussion in the previ-
ous section —under the principles of a true “fair-game” there is no opportunity
for consistently “above normal” or excess profit from embarking on a career of
(private) information production and then positioning for its biological-like
agglomeration and dissemination within the wider investment community
in the hope of gaining some “informational edge” in market pricing. Under
the auspices of Fama'’s “fair-game” all information is assumed to be free —
both public and private — thus negating the concept of private information
altogether. To be sure, Fama argued that on occasion slight differences in the
ability between investors in interpreting information can at times result in
excess profit to information producers — a ray of hope for being slightly sup-
portive of our approach - but then he snuffed out our inspirational flame
by arguing that these returns would be soon arbitraged away as any superior
skill-set immediately becomes “public” information and thus is “learned” by
the entire financial market — including one’s competitors. We would coun-
terargue by stating that to date, since there has been no formal attempt to
understand that actual fabric of information itself, such an assumption of
instantaneous information transferal by Fama can at best be described as
“heroic.” Still, “sticking to his guns” Fama characterized any sporadic excess
returns to (private) information producers resulting out of the investor learn-
ing process as profiting from “noise trading” — an often referred to insight
that highlights that private information manufacture cannot be a consistent
profit generator.® In sum, Fama was hardly supportive of the notion of active

8 Assuming the population is finite and capital is costly, long-term accounting implies
noise traders would soon cease to exist due to alack of financial backing. In short, under
“Traditional Finance” assumptions, noise trading has an economic return of less than
zero - see Friedman (1953). This promotes the question —why then do markets continue
to gyrate on “non-information” days? Our answer is that “Traditional Finance” assump-
tions are too restrictive and in actuality information is continuously being generated,
categorized and associated in a biological-like fashion. Indeed, Delong et al. (1990)
illustrated that “noise trading” can indeed be a profitable pursuit under less restrictive
“quasi-rational” assumptions regarding investor behavior. Finally, note that there is an
important academic literature highlighting the link between “noise trading” and the
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investing and by default is hardly supportive of our evolutionary purview on
information within financial markets. The principles of Fama’s “fair-game”
model are illustrated in the following box.

Fama’s “Fair-Game” Model

Fama'’s (1970) “fair-game” model is built around the following central equation
E@ar1lle) = (14 EGaer11101Pa, 2.1)

where

E is the expected value operator;

P, the price of security a at time t;

P4 t41 the price of security a at time t + 1;

ra++1 the one period percentage rate of return for security a during period t + 1 and
1; is the the set of information that is assumed to be fully reflected in the security
price at time t.

Assume the expected price of the asset a fully reflects the discounted value of all
information (public and private) that has a material affect upon the asset’s value.’
Under such conditions, the excess market value between actual price at £ + 1 and
expected price at t

Xapr1 = Pars1 — EPardr) 2.2)
is zero:
E@xq4110) = 0. (2.3)

That is, information transferal from private to public realm is instantaneous and
this makes the return from holding private information effectively zero. If expected
excess return E(eX, 1) is in any way affected by I; then Strong EMH does not

apply.1?

That said, there is a supportive cavalry on the horizon riding to our res-
cue. Consistent with our investor rationality arguments presented earlier,
Grossman and Stiglitz (1980) have pointed out that in the “real world” private
information is not costless and, as a consequence, a dichotomy must exist
between what can be categorized as “public” and “private” information. This
empirical fact implies there are profits for private information producers to

presence of “uncertainty.” Minor amounts of “uncertainty” are generally argued to be
consistent with the concept of “noise trading” — see McKenna (1986).

9 Ultimately for such an outcome to exist, investors must be fully rational — as consist-
ent with Muth’s (1961) original exposition of the rational expectations hypothesis.

10 Note: we are referring to expected excess return. Fama’s “fair-game” model does not
imply that the expected return on any asset is effectively zero.



The “Old” View of Finance 19

reap as investors regularly pay for the privilege of accessing the best analysts
to garner such private information insights before they are disseminated into
the wider public arena.!! Again, as partly alluded to in the previous section,
Grossman and Stiglitz argued that assuming such investors are economically
rational (and not sequentially replicating the mistakes of perpetually loss-
making noise traders) then one must assume that embodied in each market
price is at least some amount of monopolistic reward for those individu-
als who produce private information.!? And herein resides a poetic justice
for the Strong EMH/traditionalist protagonists. By pointing out the obvi-
ous incongruity between the real world experience and the traditionalists’
assumption of full economic rationality on behalf of investors — a necessary
condition for Fama’s “fair-game” principles to hold — Grossman and Stiglitz
(1980) had the effect of “turning the worm” so to speak back on the tradi-
tionalists. In short, it was precisely the traditionalist group of academics who
had been such arch proponents of economic rationalism to bolster their argu-
ments for Strong EMH. This is because a fully economic rational individual
will assiduously seek out new information as it arrives and correctly inter-
pret this information - including its full biological-like molecular formation
potential. However, according to the Grossman and Stiglitz argument, ration-
ality (along with a casual observation of the real world “costly information”
experience) is precisely the reason why it can be interpolated that there are
differences in the abilities of analysts and even more importantly investors
cannot possibly fully project the full consequences of information as it binds
together in a biological-like fashion and thus investors are willing to pay a
price to those analysts with superior ability who can assist them in form-
ing a better investment judgment. Subsequently, it is implied there must be
an “informational component” embodied in every asset’s price to cover the
cost of private information manufacture by the analyst community.'® This
is an important premise we will build upon extensively in our evolutionary
model of intertemporal information production and consumption presented
in Chapter 5.

Trying not to labor the point too much, we contrast the two diametric-
ally opposed views on the link between analyst ability and the actual cost
of information embodied in each asset’s market price with the aid of the
following diagrams (Figure 2.3). In essence, Strong EMH implies a perfect
competition (“fair-game”) world for information. Each individual is effect-
ively a price-taker for that component of the market price that reflects the

11 Empirically this argument has some merit — as evidenced by the exhaustive study by
Asquith et al. (2002).

12 For an empirical study illustrating the link between private information and asset
returns under a rational expectations framework, see Easley et al. (2002).

13 Indeed, Elton and Gruber (1995) point out that a preferable definition for market
“efficiency” under such circumstances would be to state that the marginal cost of
information equates to the marginal benefit.
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cost of information. This is because it is assumed there is no distinction
between the investor’s accessibility to information that is either in the
“public” or “private” realm - all market relevant information is effectively
free and therefore the public/private distinction does not apply. Importantly,
this includes a complete understanding of the full biological-like molecu-
lar formation consequences for the full information-set of each information
byte’s arrival.!'* In short, everybody knows the full consequences of a certain
information byte’s price impact (both in contemporary and latent form) thus
asset prices adjust instantaneously and correctly to reflect this knowledge.
Contrast this with the Semi-Strong and Weak versions of EMH demonstrated
in the opposite diagram where a gap opens up between what is effectively
“public” and “private” information simply because it is assumed that there
is some form of superior (monopolistic) ability on behalf of talented analysts
engaged in the production of private information.!s

If one wished to move away from static analysis for a moment and take the
element of time into account, then implicit in such a framework as presented
in Figure 2.3 is the assumption that the biological-like molecular agglomera-
tion of information is slow enough that worthy analysts can expect a certain
stream of returns from their (initially, private) information insights as they
percolate into the public domain. Ability and speed are inexorably inter-
twined under such a framework. This ultimately brings us to our next point
in the information debate in the sense that cost and ability are not the only
factors one needs to consider in forming a view of market efficiency. As Fama'’s
definitions outlined in Section 2.1 testify, speed too is an important criterion.
Why? The speed of information transferal as dictated by the biological-like
molecular principles governing information categorization, assimilation and
aggregation will determine the stream of excess profits any analyst can expect
to earn as a reward from their monopolistic skill-set in producing what is
initially coveted private information and then allowing this to percolate into
the public domain.

14 A lesser assumption would be that information is sufficiently “noisy” that nobody
can predict what is about to happen - so again, everybody is effectively playing on a
level playing field. Ironically, both arguments are consistent with the Random Walk
argument as popularized by Malkiel (1996) and discussed in detail in Section 2.5. We
thoroughly refute the Random Walk claim as our modeling in Chapter 5 will demon-
strate that just because aggregate information (and the ensuing price action) may on
the surface give the appearance of a random/chaotic pattern of behavior, this does
not mean that certain elements of this information set are not predictable should one
have the correct methodology for filtering this “noise” — which we believe we have via
our evolutionary approach toward information in financial markets. Therefore we feel
investors should not be assumed to be either “super smart” or completely ignorant,
but something more in-between.

15 Such “ability gaps” are clearly demonstrated by the perplexing phenomenon of the
“irrational” early exercise of exchange traded options by the customers of discount
brokers as opposed to the traders at large investment houses — see Poteshman and
Serbin (2003).
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Figure 2.3 The link between ability and cost in determining market efficiency'®

As any student of Finance 101 will testify, present valuation techniques
highlight the importance of time as a factor in discerning the economic viab-
ility of any enterprise. Information generation by the analyst community is
no different. If a talented analyst is to actively invest considerable time and
effort to engage in the production of a certain information byte, then it
stands to reason that they — being “economically rational” — will also have
some expectation as to the time over which they will reap a reward for this
information. The longer the time, the greater the overall reward. It is this
“scalar” property of time that makes it so piquant to the various definitions
of market efficiency espoused in Section 2.1. Indeed, it is a focus on time that
forms a key principle of our evolutionary model of intertemporal information
production and consumption presented in Chapter 5.

However, before moving on to such analysis let us now briefly review the
empirical evidence as to the “real world” validity of each alternate form of
EMH to see if this sheds any extra light on the actual speed of information

16 Morrison and Vulkan (2003) illustrate the existence of excess profit from mining
“imperfectly distributed public information” (or in other words, “private information”)
under Game Theoretic conditions. They illustrated that this remains the case even
when the entry by would-be information manufacturers is free simply because of the
latent belief structure held by these speculative agents. We will elaborate more on the
finer aspects of Game Theory in Chapter 3.
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dispersal. This potentially stands to be useful in the ensuing chapters simply
because our evolutionary model of biological-like information formation is
(by definition) a non-instantaneous event. An empirical jury coming down
in support of a Strong EMH type paradigm as typifying most financial mar-
kets at most points in time would effectively strike a killer blow against our
hypothesis of an army of economically rational analysts all producing new
ideas and disseminating them into the marketplace in search of monopol-
istic reward. Thankfully the empirical jury is by no means so unequivocal
in its verdict. Rather, any feedback as to the validity of any of the various
alternate forms of EMH in the “real world” seems to be at best characterized
as being in a permanent state of quandary — not able to make up its mind if
Strong, Semi-Strong or even Weak EMH reigns supreme. This is the best of all
possible results for our hypothesis — the reason for which will become clear
in the next section.

2.4 Do empirical studies of the EMH shed any light on
the actual speed of information transferal?

Do the plethora of empirical studies on the issue of EMH provide any answers
as to the likely degree of market efficiency that prevails in a particular market
and (concurrently) the most likely “real world” scenario for the actual speed
of information dispersal? Unfortunately, it seems the only clear conclusion
that can be drawn from the virtually innumerable number of studies conduc-
ted on EMH is that there is in fact no clear conclusion. Rather, it appears that
various forms of EMH seem to typify different markets at different points in
time —an interesting insight that we will revisit toward the end of this section.
But back to the actual empirical studies themselves, by way of background
such tests have generally fallen into five stylized forms.}” Some of the studies
under these various banners are documented in a Table 2.1.

17 Unfortunately, as will be discussed a little later in this section, from a methodolo-
gical standpoint, many of these cited studies purview the EMH spectrum as binary. In
short, premise “0” — or the “null hypothesis” - is that all information is public informa-
tion (which the market immediately factors-in) and that the only private information
is illegal “insider” information. While premise “1” — the “alternative hypothesis” - is
that both public and private information coexists but unfortunately there is no attempt
to explain (as is our purposes) the evolution of this information from private to public
realm. We believe this to be an extremely limiting testing methodology. The thrust of
our Evolutionary Finance technique is to explicitly model the “evolution” of informa-
tion from private to public realms using a biological-like molecular formation analogy
as a general framework for analysis. This, under certain assumptions, allows for a more
graded view of the market efficiency spectrum. In short, we believe a better understand-
ing of the true microfoundations of information generation and transmission would
provide a far better starting-point as a methodological test-bed in assessing the relative
efficiency within markets from an empirical standpoint. We cite this as a potential
avenue of fruitful future research.



Table 2.1 The various categorizations of empirical EMH analysis

Accuracy of
forecasts in
generating
“excess” returns

Information
transmission
over market “events”

Power of
technical analysis

Seasonal
patterns in time
series

Firm characteristics
and excess return

Latane et al. (1970);
Black (1973); Holloway
(1981); Copeland and
Mayers (1982); Dimson
and Marsh (1984);
Rozeff (1984); Stickel
(1985); Elton et al.
(1986); Kiem and
Stambaugh (1986);
Campbell (1991);
Pesaran and
Timmermann (1995);
Womack (1996); Barber
et al. (2001).

Reilly and Hatfield
(1969); Kraus and Stoll
(1972); Pettit (1972);
Grier and Albin (1973);
Watts (1973); Firth
(1975); Ibbotson (1975);
Dodd and Ruback
(1977); Joy et al. (1977);
Charest (1978); Watts
(1978); Aharony and
Swary (1980);
Rendleman et al. (1982);
Foster et al. (1984);
Pierce and Roley (1985);
Jain (1988).

Fama (1965); Fama and
Blume (1966); Levy
(1967); Jensen and
Bennington (1970);
Pinches (1970); Praetz
(1972); Fama and
MacBeth (1973);
Cootner (1974); Fama
and French (1988);
Brush (1986); Conrad
and Kaul (1988); Poterba
and Summers (1988);
Pruitt and White (1988);
Glosten (1989); Fama
(1991); Campbell et al.
(1993); Ball et al. (1995);
Benik and Bossaerts
(2001).

Granger (1975); Rozeft
and Kinney (1976);
Branch (1977); Dyl
(1977); French (1980);
Gibbons and Hess
(1981); Brown et al.
(1983); Gultekin and
Gultekin (1983);
Reinganum (1983a);
Keim (1983); Berges

et al. (1984); Lakonishok
and Smidt (1984); Keim
and Stambaugh (1984);
Tinic and West (1984);
Kato and Shallheim
(1985); Keim (1985);
Keim (1986); Chang and
Pinegar (1986); Harris
(1986); Ariel (1987);
Jones et al. (1987).

Dimson (1979);

Banz (1981);
Reinganum (1981);

Roll (1981); Basu (1983);
Brown et al. (1983);
Stoll and Whaley (1983);
Reinganum (1983b);
Shiller (1984);

Balvers et al. (1990);
Chan et al. (1991);
Reinganum (1992).
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Don’t be overcome by the extensive categorization and citation in the
Table 2.1. The point readers should focus on simply stated is that all these tests
have a common denominator — they search for associations between market
information and market returns. Systematic excess return from private
information (such as analyst forecasts) or under-utilized public information
(such as technical rules, seasonal patterns or firm characteristics) implies a
refutation of Strong EMH. Why? Primarily because under the Strong EMH
conditions — as outlined in the previous sections — such information should
be already reflected in an asset’s price. Thus a systematic excess return to any
one investor from having an “informational-edge” is implausible under the
austere Strong EMH world. What these studies attempt to do is to categor-
ize this “informational-edge” into a variety of forms. In terms of specifics,
forms (1) and (2) of our categorized EMH testing methodologies in Table 2.1 -
testing the accuracy of analyst forecasts in generating excess returns and
measuring the speed of information transmission during market “events” —
are obvious in their rationale for empirical EMH testing in the respect that
they explicitly seek to clarify the existence and transmission of profit-making
private information as it percolates into the public realm. That said, the
latter three forms of EMH testing are much more subtle in their empirical
approach since they attempt to identify systematic excess return from spe-
cific trading rules rather than attempting to measure informational impact
directly.

For instance, form (3) of the EMH testing methodology highlighted in
Table 2.1 — estimating the profit generating capacity of technical analysis —
is especially interesting as it attempts to test the hypothesis that price trends
are an informational variable to market participants (an idea seized upon in
some of the “new” views within finance described in Chapter 3 and indeed,
technical analysis comprises one of the four major information categories
for our information byte components).!® If price trends themselves were to
exhibit predictive patterns in a fashion consistent with the precepts of tech-
nical analysis, then this would imply a refutation of the principle of Strong
EMH. Why? Discerning future prices from patterns exhibited in past prices
under the guise of technical analysis is totally at odds with the “instantaneous
adjustment” principles espoused under Strong EMH. Indeed, the tradition-
alists are particularly harsh in their judgment of the efficacy of technical
analysis. To quote Malkiel (1996):

Technical analysis is anathema to the academic world. We love to pick on
it. Our bullying tactics are prompted by two considerations: (1) after pay-
ing transaction costs, the method does not do better than a buy-and-hold

18 The other major informational categories being — fundamental, economic and
political information.
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strategy for investors, and (2) it’s easy to pick on. And while it may seem
a bit unfair to pick on such a sorry target, just remember: It's your money
we are trying to save. (Malkiel 1996, p. 139)

As stated earlier, Strong EMH argues that all information (both public and
private) that is relevant to determining the future price of an asset is instant-
aneously incorporated into an asset’s price upon its production - this includes
latent price information. Subsequently there is no incentive for any analyst
(including technical analysts) to systematically produce information in an
attempt to position themselves for reward once this information is dispersed
to the wider investment community as effectively there is no opportunity to
do so. Under Strong EMH principles, the production and dispersal of informa-
tion are inexorably intertwined and are instantaneous events. Indeed, as also
mentioned earlier, even the skill-set used to produce information is effect-
ively in the public domain the moment it has been developed. In one fell
swoop this totally removes the incentive for skilled analysts to devote them-
selves to a career of producing information - especially when it comes to
enhancing memes and themes which are already in place in the hope of
an even larger price impact and therefore subsequent reward. Under Strong
EMH it is assumed investors already know the full consequences of a given
information byte’s price impact-that we will demonstrate in Chapter 4 has
the potential to be governed by Complex nonlinear principles when various
information bytes come together to form memes. We find this assumption of
perfect foresight a little “heroic” to say the least. Indeed, in Chapters 4 and 5
we will formalize the concept of “latency” in all information bytes that when
unlocked generates the price movements that technical analysts feed upon
for their particular style of analysis. In short, in contrast to the traditional-
ist’s viewpoint, Evolutionary Finance principles are highly supportive of the
pursuit of technical analysis as a mechanism for alpha-generation.

As for form (4) of the empirical EMH testing methodologies identified in
Table 2.1 — determining if asset prices follow a reliable seasonal pattern —
this particular methodology follows in a similar vein to the conceptual basis
for the inclusion of technical analysis as a separate category for EMH empir-
ical analysis. That is, estimating the degree of efficacy of seasonal patterns
as reliable alpha-generators tests yet again the foundation for a degree of
latency in information. Any statistically significant correlation between par-
ticular trading “seasons” illustrates a link between past and present prices
and the Strong EMH null hypothesis is effectively rejected. Why? Simply
because investors could use such information to formulate a reliable trading
rule. Rather, investors should already know of such phenomena (assuming it
exists) and this should be reflected in prices — thus denying any return from
trading “seasonals.” In the tests cited within this category in Table 2.1, vari-
ous correlations were tested over alternate time horizons with different lags
but the same principles applied - if any associative tendencies were identified
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between trading season and prices the Strong EMH hypothesis was rejected.
The results were mixed.

Finally, form (5) of our empirical EMH testing methodologies — the link
between firm characteristics and the presence of excess return — provides
perhaps the most esoteric of all EMH empirical test-beds. Attempting to expli-
citly link firm characteristics such as size to the presence of excess returns
implies a failure of market efficiency. Why? If a market were truly efficient
then such descriptive characteristics of firms and its relationship with price
should already be known by all investors — thus denying any form of excess
return.!® Rather, under Strong EMH principles characteristics such as firm
size that do on occasion generate excess return can only do so under the
somewhat random practice of “noise trading.”

So, these are the various critiques, what to make of this extensive — albeit
conflicting — array of empirical evidence as to which form of EMH best typi-
fies markets in the “real world”? It is often quoted that it is impossible to
step into the same river twice. Apparently, the same principle applies to
markets. We believe the academic stalemate in failing to conclusively come
down in favor of a particular form of EMH can perhaps best be described
by the time-dependent nature of market efficiency itself — and, by default,
the biological-like determined speed of information production and dissem-
ination. As we will argue in Chapters 4 and 5, the forces governing the
biological-like molecular formation of information are difficult to predict and
have the potential to generate complex nonlinearities in pricing behavior.
Without doubt, this has direct implications for any attempt at measurement
of market efficiency simply because at times the market may take on a some-
what random appearance in response to these nonlinearities, while at other
times, the market follows a more predictable pattern. Indeed, we would favor
a spectrum rather than binary — all or nothing — approach to EMH testing
where the market evolves from fulfilling the conditions from one form of
EMH to another as information, price and indeed the supporting infrastruc-
ture of the market itself adjusts through time in response to the genetic-like
forces governing emergent information. Obviously, to undertake such ana-
lysis one would require a better understanding of the true microfoundations
of information generation and transmission - a charter which our Evolu-
tionary Finance approach aims to fulfill and which is indeed achieved in
our extensively documented Game Theoretic microfoundations of analyst
behavior detailed in Chapter 6. But more on this later, for now let us final-
ize our critique of the “traditionalist” elements of information assessment
within the existing finance literature by outlining the “old” view on the actual
mechanics of information arrival.

19 Note we are referring to excess returns here. Obviously smaller firms would command
a larger risk premium given their higher potential to fail.
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2.5 Is"Strong EMH" all there is to the “Traditional”
view of markets and information?

To build their veritable battery of defenses in the financial engineering sphere
the traditionalists required more in their armory than just a firm convic-
tion of strong market efficiency and the principles of Fama’s “Fair-Game.” In
particular, they needed to somehow interpolate their beliefs on the instant-
aneous speed of information dispersal into a model of how asset prices
actually incrementally move through time — after all, it is this underlying
premise that drives many a financial engineering technique. The answer
to the traditionalist prayers came in the form of the Random Walk Hypo-
thesis which - along with Fama’s “Fair-Game” principles and some fairly
heroic assumptions as to the actual pattern of information arrival — resulted
in the much-vaunted Gaussian (Normal) distribution of asset returns.?’ As
briefly touched upon in Section 2.2, it is this Gaussian form that permeates
risk calculation across an entire spectrum of “Traditional Finance” analytical
tools — from Black-Scholes option pricing, to fixed-income factor models, to
mean-variance optimization.

The Random Walk?'

Under a “Fair-Game” and Independent and Identically Distributed (IID) “ran-
dom” information arrival conditions, asset price movements are argued to reflect
a Markov process. As a consequence, the only relevant variable in predicting the
future value of an asset is its present value (past history has no relevance). Such is
the hypothesis of the “Random walk.”??

Appealing to a Wiener process (or somewhat interchangeably, Brownian motion),
the Random Walk asset price model can thus be expressed in the continuous time
limit as

dP = Pt + o PdX, (2.4)

where dP is evolution of asset price; nPt the drift and o PdX is the volatility of asset
price as conditioned by a normal distribution (dX is effectively random).

20 S0 named after Carl Friedrich Gauss (1777-1855) even though the first N(u, o2) proof
dates back to 1733 by A. de Moivre (1667-1745) as a special case for Bernoulli variables
(with p = 1/2).

21 For a widely discursive overview of the “pro” Random Walk argument refer to Malkiel
(1996). To contrast, an interesting rebuttal — but more quantitative approach - is
available in Lo and MacKinlay (1999).

22 The formal foundations of the Random Walk approach in a financial context are
traced back to Osborne (1964) and Samuelson (1965) but it should be noted that as
far back as 1900 Bachelier proposed that asset prices follow a Random Walk type of
intertemporal pattern. Readers should note that much of the mathematics in modeling
Random Walk movements with respect to time dates back to sixteenth-century games
of chance - see Hald (1990).
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Mathematically, this is a very convenient form via which to model asset price
movements. Ito’s Lemma provides solution to Equation (2.4) and, more import-
antly, lays the foundation for the Black-Scholes model of option pricing. However,
for our purposes it is sufficient to concentrate on the last term - volatility (¢) —
and how this is specifically modeled by a Gaussian distribution. Critically, it is
the assumption of IID information arrival that gives (o) its definite “Gaussian fla-
vor.” This imposed attribute of volatility in asset prices in response to a random
error component generated by the assumed random arrival of information mani-
fests into a belief structure as to how asset prices evolve across an entire spectrum
of “Traditional Finance” analytical tools — from Black-Scholes option pricing, to
fixed-income factor models, to mean-variance optimization. Indeed, as mentioned
earlier much of what we witness today as financial engineering “best practice” is
premised on this (and, by association, the Strong EMH) outcome. In rebuttal, we
argue that while the benefits of Gaussian form (o) may come in terms of math-
ematical tractability (see later for more details) this comes at a considerable cost
in terms of the relevance of “Traditional Finance” assumptions in explaining the
prevailing “real world” orthodoxy of analyst and informational behavior. In partic-
ular, we argue that while information (and by definition, asset prices) may at times
give the semblance of being a random occurrence, the foundations of “real world”
information production and its biological-like molecular formation imply this is
merely a surface interpretation of events — the “real world” drivers of information
are deterministic, not stochastic, in form.

Finally, it is important to note that while the Random Walk Hypothesis should be
seen as an extension of Strong EMH in aiding and abetting the traditionalist cause,
the direction of causality cannot be inverted. LeRoy (1973) and Lucas (1978) have
both demonstrated a somewhat “random” pattern in price movement is neither a
necessary nor sufficient condition for strong market efficiency - this is an important
point we will develop a little further in Chapter 3.

One crucial point to note in the above shaded box is that the assumption
of Fama's “Fair-Game” is by itself not sufficient to ensure normalcy in the
distribution of asset returns — in particular, the Gaussian format of (o). It
is only by an additional assumption that the arrival of information is suf-
ficiently random in nature (IID) that the principles of a “Fair-Game” result
in the characteristic Gaussian distribution of asset returns (as illustrated in
Figure 2.4).

If one wanted to be harsh, one could accuse the traditionalists of “man-
ufacturing consent” in assuming information arrival is IID and therefore
“random.” The obvious criticism here is that the arrival of some market
information necessarily does not always come as a “surprise.” What about
regularly scheduled economic and company reports which, in some cases,
are reliably and accurately forecast? The traditionalist retort is that — as men-
tioned earlier - either investors are adroit enough to price the full implications
of such a release across all assets (including the biological-like molecular
clustering impact that a particular information byte will have upon the exist-
ing information-set) or investors are collectively ignorant of such “knock-on”
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Figure 2.4 The “traditional finance” model of risk/return distribution - the Gaussian
form?23

potential. Either way, asset prices still react in a random fashion once (even
well forecast scheduled) information releases are embedded into the existing
information-set and a complex array of nonlinear feedback effects manifest
in response to the agglomeration of this new information in a biological-like
molecular fashion into the existing information-set.2* Indeed, we respond
by yet again saying that just because the outcome of this process may
look random doesn’t necessarily mean that its determining conditions are
truly stochastic.

As we will display in Chapter 3, at times deterministic (rather than
stochastic) forms can generate chaotic sequences that fool many a statistical
test for “randomness.”?® Indeed, we would go further in arguing that the

23 Note: we have assumed zero drift in asset returns for exposition purposes only.

24 One solution to this overwhelming “noise” problem in the release of information has
been suggested by Tay and Linn (2001) who argue that traders can adopt a “fuzzy logic”
methodology to condense the plethora of possible alternatives into a few simple gen-
eralized notions. Such aggregative rules of thumb sometimes work well in the modeled
environment — as will be explained in Chapter 3.

25 Indeed, such an outcome could be construed as turning the argument back on those
who have espoused the virtues of the Strong EMH mindset by arguing investors are



30 Evolutionary Finance

true biological-like deterministic foundations of the way financial informa-
tion actually comes together, and importantly how investors interpret this
information, can explain the varying empirical results of the tests of EMH
presented in Section 2.4. As mentioned earlier, at times, this clustering of
information bytes into memes, themes and even overall market sentiment
occurs in a reasonably predictable fashion and is thus supportive of a Weak
EMH outcome. At other points in time, the complex nonlinear relationships
that necessarily go “hand-in-glove” with such a framework underpinning
the drivers of information dynamics generate pricing outcomes of a defin-
ite chaotic nature — which is consistent with an empirical result supportive
of Strong EMH. We argue that what is important to understand here are
the true microfoundation drivers of this phenomenon - as will be explained
in detail in Chapter 6 — and not to opt for simplistic notions of informa-
tion “randomness” as indicative of the market’s informational state simply
because on occasion price outcomes seem to (erroneously) intimate as much.
Instead, it is far more important to understand the evolution of pricing beha-
vior from predictable to “random-like” states. To do this, one should believe
in a spectrum (rather than binary outcome) for market efficiency and indeed,
form a comprehensive understanding of the true biological-like molecular
forces governing information generation and transmission.

Finally, before concluding, why all the fuss about the need for Gaussian
form in the first place? Obviously the traditionalists went to a lot of trouble to
make the necessary assumptions to generate this particular density structure
for asset price returns but that still doesn’t explain why one would neces-
sarily indulge in such behavior? Well, as we briefly intimated in the shaded
box earlier, the reason why this particular distribution was “aimed for” via
assumption in preference to other distributional forms is simply because of
its mathematical tractability. Gaussian forms are additive — in short, sum-
mate a sequence of Gaussian forms and you end up with a Gaussian form.
This made the algebra easier — especially when it is considered that much of
the traditionalist thought paradigm was built in the 1950s and 1960s when
most analytical solutions were sought by putting pen to paper and not com-
putationally derived (as is the case in many instances today). Furthermore,
the Gaussian distributional form has the appealing attribute of finite vari-
ance which made the calculus easier when seeking intertemporal solutions.
Finally, as we briefly highlighted earlier, in many cases the distribution of
returns for any given asset does come to resemble through time what one
would come to expect had prices (and therefore information) been truly
a random sequence — provided one chooses the correct timeframe. But we

“fooled by randomness” — see Taleb (2004). It may be that such “randomness” validat-
ing tests bolstering such arguments have themselves been fooled by the deterministic
complex/chaotic informational foundations that drive markets. We will discuss this in
greater detail in Chapter 3.
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reiterate, just because something does on occasion may look to be random,
doesn’t necessarily mean that it is truly stochastic in nature.

So to conclude, we would argue that the mathematical tractability of the
Gaussian form appears to have been put ahead of the relevance of tradition-
alist finance assumptions about market (and in particular, information beha-
vior) relative to what we observe in the real world. In particular, traditionalist
beliefs regarding true market structure (Strong EMH/Fama’s “Fair-Game”) and
the forces governing the generation and dispersal of information (IID) appear
to be extremely limiting. The fact that these questionable assumptions under-
pin the entire edifice of the traditionalist approach toward risk and return
assessment certainly raises concern as to the applicability of these mechan-
ics as a one-stop solution for all financial engineering requirements. Many
argue that it is time to investigate an alternative approach or at the very
least, remove some of the more stringent behavioral/institutional assump-
tions underlying the traditionalist platform. We now turn to some of these
“new view” challenges before presenting our own Evolutionary Finance pur-
view of the way in which asset prices and information symbiotically interact
through time in a manner that is analogous to a biological-like molecular
pattern of informational clustering.



3

The “New"” View of Finance

In this chapter we discuss the “new” view challenges to the traditionalist
finance thought paradigm. Thankfully, there have been a variety of altern-
atives put forward to supercede the stringent set of assumptions imposed
under the “old” view/traditionalist finance interpretation of the way mar-
kets operate. Even better, many of these “new” view challenges — as we
label them - are starting to enter the mainstream of “received wisdom” in
finance. Still, regrettably for us many of these “new” view challenges con-
tinue to regard information as a uniform intangible concept. There is no
information spectrum, no texture as to how information is actually manu-
factured and disseminated, no extensive microfoundation structure of how
the actual components of what investors come to regard as “information”
actually bolt together. This is where our Evolutionary Finance perspective
comes in — we aim to identify what actually constitutes a certain stream of
financial information’s “DNA.”

But that is the topic for the next chapter. For now, what of these “new”
view challenges? Are there any useful insights among these rebuttals of the
traditionalist “old” view thought paradigm that might prove useful for our
Evolutionary Finance purposes? Let us start by saying that even though these
“new” view challenges treat information as though it were a generic commod-
itized concept, it by no means implies that we cannot adopt at least some
of their key principles within our Evolutionary Finance framework. Indeed,
in true spirit with Sir Isaac Newton’s maxim “If I have seen further it is by
standing on the shoulders of giants” we must stress here that we would be lost
without being able to leverage at least some of the key insights put forward
by these “new” view protagonists.!

To guide the reader along our eclectic path of selecting certain building
blocks from within the “new” view way of thinking, we have decided to
break the various challenges to the traditionalist finance line of reasoning
into three separate categories.

I Quote from Sir Isaac Newton in his letter to Robert Hooke — dated February 5, 1676.
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e Challenge no. 1: Determinism, Complexity Theory and the Nonlinear
Dynamics School.

e Challenge no. 2: Bounded Rationality, Heterogeneous Agents and the
Behavioral Finance School.

e Challenge no. 3: Trading Rules, Evolutionary Games and Artificial Markets.

We conclude this chapter by highlighting the mix of components that
we have chosen from within each of these three categories to assist us in the
formulation of our Evolutionary Finance framework. But let us start by giving
a brief appraisal of each “new” view challenge in turn.

3.1 “"New" view challenge no. 1: Determinism, complexity
theory and the nonlinear dynamics school

Nonlinear dynamic systems come in many forms but two categories of spe-
cial interest in finance “are Complex” systems and another popular class of
models known as “Chaotic” systems.?

e Complex systems are nonlinear dynamic systems that display self-
organizing behavior and are primarily deterministic rather than stochastic
in foundation.

e Chaotic systems are nonlinear dynamic systems that are again, primar-
ily deterministic rather than stochastic in foundation, but display non-
replicating/unstable behavior dynamically.

Let us deal with Chaotic systems first since they are but a subset of the
much larger class of Complex systems. Why are Chaos models of interest
to “new” view clergy as a challenge to the traditionalist paradigm? Well, a lot
hinges on the terminology of “deterministic” rather than “stochastic” in the
earlier brief definitions. Deterministic systems are nonrandom in nature —
their foundations are mathematical rather than statistical.® This stands in

2 Typically such systems are dynamic in nature. Sterman (2000) categorizes six gener-
alized classes of dynamic system — “exponential growth” (e.g., y = b'), “goal seeking”
(e.g., y = log b*), “S-shaped growth,” “oscillation” (e.g., y = 1/(x2 + 1)), “growth with
overshoot” and “overshoot and collapse,” for example,

X=(a—cy)
y =y(dx —Db)

Chaos and Complexity models fall mostly within the oscillation category.

3 The stochastic versus deterministic debate has a long lineage. Some argue there are few
truly random sequences in life except perhaps in quantum mechanics where Einstein’s
proof of the random behavior of elementary particles near the Planck scale still reigns
supreme. Still, even this is under threat thanks to recent advances in String Theory.
Indeed, Duncan Watts in his book Small Worlds (1999) identifies that even the most
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direct contrast to the principles of IID driven “random walk” espoused in
the previous chapter. But again, as we stressed repeatedly in Chapter 2, just
because something may actually look random on the surface doesn’t neces-
sarily mean that its true microfoundations are actually stochastic — as the
following application illustrates.

A simple deterministic model of price discovery

Let us introduce a very simple rule of thumb via which prices are set. To start with,
let us assume price determination at time f, is driven by the following logistic
equation

P(ty) = ¢P(ty-1) — pP*(ty-1) = ¢P(ty_D[1 — P(ty-1)], B.1

where ¢P(t,—1) implies demand created by buyers causes price to rise at rate ¢; and
éP2(t,_1) implies supply created by sellers causes price to fall at rate ¢pP(f,,_1).
Obviously, this is a deterministic model in the sense that investor price setting
is not random but conditioned by the rules specified in Equation (3.1).% But just
because our model is deterministic in foundation does not imply that its dynamics
are not “random” in appearance. For example, calibrating our model by setting ¢ at
4 in Equation (3.1) and for simplicity constraining 0 < P, < 1, it can be illustrated
(see Figure 3.1) that the time-series of price movements generated by this (chaotic)
deterministic process are almost indistinguishable from a series of hypothesized
price movements generated by a purely stochastic random number generator.®

innocuous supposedly “random” event such as a chance meeting of a friend at a
remote location generally has deterministic foundations. For instance, you may both
have the same hobbies, vocation, be generally of the same age, and the same cul-
tural/educational background. This narrows the odds of such a “chance” meeting
considerably. Further, readers should note that within this book we take the purest
notion of “determinism” rather than the “fine graining/coarse graining” outcome of
Ergodic Theory which argues (in sympathy with the earlier cited uncertainty principle
in physics) that statistical “fine grains” can be regarded as sufficiently deterministic at
a “coarse-grain” level provided the right statistical mechanic rules are applied. For an
erudite overview of the links between supposedly “random” systems and systems of a
more deterministic nature refer to Beltrami (1999).

4 More will be said on the use of heuristic rules of thumb in the next section.

5 Note: our focus on a deterministic approach does not constrain us to only technical
(ex post price) models of price evolution. Price setting in Equation (3.1) could just as
easily incorporate additional “fundamental” factors such as the forces which govern
future supply and demand. These were omitted for simplicity here but will be built
upon extensively in Chapter 5.

6 Note that the calibration values of our model were not chosen arbitrarily but rather
in accordance with typical logistic equation principles where 0 < ¢ < 3 results in a reg-
ular period cycle, 3 < ¢ < 3.5699 results in the system becoming increasingly unstable
(with the appearance of new strange attractors), and for 3.5699 < ¢ < oo the system
becoming chaotic (and uniformly chaotic at ¢ = 4). For more on the properties of
logistic equations, see Devaney (1989).
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Figure 3.1 Stochastic or deterministic? Can you spot the difference?

Indeed, true to form, our deterministic logistic equation was able to fool a
variety of tests for randomness such as scatter plot diagrams of the data, auto-
correlation tests and nonparametric Wilcoxon Rank Sum testing (that indicates no
significant difference between a purely stochastic form and our deterministic dis-
tribution). That said, plotting the first difference of price movement as specified in
Equation (3.1) or testing for Normalcy using chi-square or Kolmogorov-Smirnov
tests did indicate that our deterministic model failed in hypothesized “Gaussian”
form (see first difference distribution and QQ plots in Figure 3.2) — thus illustrating
that some Normalcy tests are obviously better than others.”

The key element for readers to focus on in Equation (3.1) is the specification
of feedback - that is, prices today are related (in nonlinear fashion) to prices
yesterday.® It is this feedback loop that gives the logistic equation its chaotic appear-
ance for certain calibrations of the inputs. Feedback of this type is integral to this
class of dynamic system. Note that this form of time-related interdependence is
in direct contravention to the EMH testing methodologies identified in Chapter 2.
That said, there is little doubt that if the chaotic outcome of such feedback was able
to fool the variety of specific purpose tests we performed, it is also likely that some
of the econometric tests cited in Table 2.1 are just as easily in question - especially
those that came down in favor of a Strong EMH outcome. We will use both the
concept of feedback and time-related interdependence in our modeling of the
biological-like molecular formation of information in finance in Chapters 5 and 6.

7 Note: this but a small subset of an entire battery of tests that have been constructed
specifically to discern what is truly “random” and what is actually deterministic in
foundation - for examples of such tests see Scheinkman and LeBaron (1989).

8 For an examination of the link between price feedback and financial bubbles, refer
to Cohen (1997).
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Figure 3.2 Some useful tests for normalcy

So what purpose does the above serve to assist the practitioner rather than
the theorist? By emphasizing the deceptively random appearance of Chaotic
sequences these “new” view determinists were able to discredit a key argu-
ment within the traditionalists battery of defenses. In particular, in sympathy
with the precepts of technical analysis, a number of “scaling” experiments
have been conducted examining the correlation (fractal) dimensions between
successive timescales.” What is the purpose of such studies? To quote Peters
(1996) “A fractal is an object in which the parts are in some way related to
the whole.”!? In other words, fractal studies typically look for interdepend-
encies (correlation) between datasets in different timescales in an attempt to
identify the true deterministic foundations that make up what we perceive
to be overall market dynamics. Obviously, any form of interdependency is in
direct contravention to Strong EMH principles. Indeed, it is interesting that
in many cases these studies illustrated a marked “leveling off” in correlation
dimension as time scaled — thus highlighting underlying deterministic rather
than stochastic drivers of movements in asset prices. The difficulty remains

9This is typically done by constructing a k-dimensional vector X(f) = [P(}),
P(t+71),P(t+27)...P(t+ (k—1))7] and plotting its trajectory in k-dimensions as t var-
ies. Indeed, one can further formalize this approach by examining Hurst exponents. A
Hurst exponent # 0.5 implies intertemporal correlations and thus fractal dimensions.
10'We will present more on this holistic element to nonlinear studies of the market
later in this section.
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however in ascertaining the actual formulation of the underlying determ-
inistic microfoundations. Unfortunately from the practitioner’s perspective,
this is where Chaos Theory has had a tendency to disappoint.

In fact, the experience with the implementation of Chaos Theory into the
applied finance field has been mixed at best. Vaga (1994) is a strong supporter
of using Chaos Theory from a practitioner’s perspective but Scheinkman and
Le Baron (1989) found little evidence of nonlinear deterministic forces at
work in their analysis of the US equity market.!! That said, Peters (1996)
pointed out that the Scheinkman and Le Baron study may have been biased
against a deterministic outcome thanks to insufficient observations. Still,
what this study did definitely demonstrate is the immense difficulty in mod-
eling dynamic systems with multiple variables — in the case of Scheinkman
and Le Baron (1989) it was a six-variable system. Indeed, while fractals may
give us some insight as to the interdependent nature of various timescales
in price movements, one cannot be truly sure that they understand the full
workings of a Chaotic system without the specification of its functional form
and initial conditions. The more variables in the system, the more difficult
this becomes. Ergo, it becomes very problematic to make forward projections
of price action based on only partial (fractal) glimpses of the dynamics of a
truly Chaotic system.!?

In short, it appears that the very “chaotic” nature of Chaos systems
has proven problematic from the practitioner’s standpoint. Urbach (2000)
illustrated that even systems that are truly deterministic in origin are not
immune from the presence of additional statistical “noise” that obfuscates
the underlying drivers. So while identifying fractal dimensions may be use-
ful for questioning the traditionalist finance evangelical-like belief in Strong
EMH, it still leaves the question - if there are deterministic forces at work,
how best to identify them and what is the rationale for their existence?
This is where our Evolutionary Finance approach aims to make a major
contribution by identifying precisely why fractal interdependencies exist —
this is done via modeling the evolutionary-like formation of price sensitive

11 That said, our own empirical work has also demonstrated the US market as a particu-
larly difficult “nut to crack” in formulating reliable alpha generating strategies — simply
because there are so many analysts picking over this market 24/7 and subsequently
“bidding” the alpha out of any nascent exceptional return strategy. It appears some-
what ironic therefore that many tests of market efficiency etc. use the US market as a
base-case scenario (mostly because of the quality of its time-series data) when practi-
tioners realize that the US example is more the “exception to the rule” rather than the
“rule” itself.

12 Such fractal dimensions are typically measured as ¢ = log « /log(1/2r) where « is in
effect the required number of circles to encompass a “noisy” price pattern and r is the
standard circle radius. As ¢ = 2 the more “noisy” the data. An alternate approach
to this is to use “boxes” as opposed to “circles.” Indeed such a tact was proposed by
Mandelbrot (1997).
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information using nonlinear processes such as evolutionary algorithms (part
of the neural network “family” of nonlinear modeling techniques). Import-
antly we incorporate not just price data into our analysis but the entire
information-set — technical, fundamental, economic and political - in build-
ing our “informational genotype” to match each asset price phenotype. By
doing so, we overcome some of the earlier implementation problems of
nonlinear dynamic modeling from the practitioners standpoint.

But more on this later. One question to answer right now is that if interde-
pendencies between price ticks in high frequency data do seem to occur in
a deterministic manner, it still does not explain why under most conditions
bid/offer spreads do not fluctuate wildly from minute to minute — as implied
under a pure Chaos regimen. This “self-organizing” nature of the market cuts
directly across the principles of Chaos Theory in its purest sense. Thankfully
all is not lost. Attention has now turned to a particular form of nonlinear
dynamic system that contains many of the deterministic benefits of Chaotic
systems — in that they look deceptively “random” when calibrated — but they
do not suffer from as many of the infinite instability problems as pure Chaos.
This new breed of nonlinear dynamic system are known as “Complex” sys-
tems and represent a wider class of nonlinear deterministic models - indeed,
they umbrella Chaos models.

As highlighted at the start of this section, Complex systems are nonlinear
dynamic systems that display self-organizing behavior and (like Chaotic
systems) are primarily deterministic rather than stochastic in foundation.?
They are particularly relevant to modeling biological-like systems due to
the natural “checks and balances” endogenized within their mechanics and
are thus utilized in our formal modeling presented in Chapter 5. To quote the
eminent physicist Erwin Schrodinger - a living organism has the “astonishing
gift of concentrating a ‘stream of order’ on itself and thus escaping the
decay into atomic chaos.”!* As a consequence, as we will amply illustrate in
Chapter 5, such systems — at the holistic level at least — are particularly use-
tul for modeling the evolution of information in a biological-like molecular
manner.

How do Complex nonlinear systems actually “self-organize”? Well, refer-
ring back to our much-loved logistic equation cited earlier, Complex systems
cover all scales for ¢ > 3. Therefore, they encompass what is generally referred
to as Chaotic systems (especially uniformly Chaotic models where ¢ = 4) but
also describe nonlinear models that are intermittently “random” in appear-
ance at certain times while at other times they are more regular in their

13 Such systems are sometimes known as “self-organizing criticality” after Bak and
Chen (1991). Indeed, the underlying characteristics of such systems may be con-
figured in a manner that promotes the emergence of what Waldrop (1992) labeled
as “spontaneous self-organization.”

4 See Schrodinger (1967).
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dynamics — perfect for our purposes given the discussion in Chapter 2 on the
empirical inconsistencies between the various EMH empirical studies. The
“schizophrenic” nature of Complex systems is a characteristic of the “self-
organizing” feedback driving their time path — as evidenced by the presence
of “strange attractors” in phase portrait depictions of this class of nonlinear
deterministic models.

Increasing levels of Complexity

To illustrate how increasing levels of Complexity arise from incremental move-
ments in the nonlinear feedback mechanism ¢ cited in our logistic Equation (3.1),
we illustrate the following charts. Figure 3.3 demonstrates that for values of
0<¢<3.0 (in the following example ¢ =2.9) the nonlinear dynamic system
represented by our logistic equation is convergent to a singular steady-state.
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Figure 3.3 Our logistic equation calibrated at ¢ = 2.9

Figure 3.4 illustrates that for ¢ = 3.5 the system becomes increasingly unstable with
the appearance of multiple strange attractors.

Finally, for ¢ = 4.0 our system becomes uniformly Chaotic with no discernable
oscillatory pattern (see Figure 3.5).

Complex systems encompass all calibrations where ¢ > 3. To quote Mainzer
(1997) “the degrees of increasing Complexity are defined by the increasing bifurca-
tions which lead to Chaos as the most complex and fractal scenario.”'®> Complexity
arises primarily because the system jumps from one “strange attractor” to another.
The characteristics of these strange attractors are explained by Lyapunov expo-
nents. It is only in the range 3.5699 < ¢ < oo that the system can be described as

15 For a detailed discussion of the “robust yet fragile” nature of Complex systems, see
Doyle (2001).
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Chaotic (and uniformly so for ¢ = 4). Hence, it can be surmised that Chaos itself
falls within the larger family of Complex models.
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Figure 3.4 Our logistic equation calibrated at ¢ = 3.5
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Figure 3.5 Our logistic equation calibrated at ¢ = 4.0

Itis not just within the field of finance that Complexity Theory has made its
presence felt. The smallest microfoundation deterministic element in such
systems can range from an economic agent, to a gene, to an organism, to
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a particle - thus making the analysis of self-organizing nonlinear Complex
systems applicable to a wide range of academic fields, including our determin-
istic information-based Evolutionary Finance approach.!¢ Indeed, the higher
order characteristic of these nonlinear systems — which implies that they
cannot be broken down into parts and solved piecemeal (as is the case with
linear systems) — makes the “holistic” nature of Complexity Theory a key
selling point in explaining behavior in everything from traffic flows, to ant
colonies, to financial markets.!”

In fact, the principle of the “sum is greater than the individual parts” in
Complex systems has now been popularized to such an extent that it has
even made its way into generalist management literature.'® Long-standing
proponents of this over-arching holistic perspective toward systems think-
ing such as Arthur (1994), Bak (1997) and Farmer (1998) fervently argue
against the “reductionist” notions of traditional science — and finance for
that matter.! In short, reductionists have typically argued that a system is
best understood by examining the role of each component part — sometimes
in minute detail and mostly in glorious isolation. To contrast, Complex-
ity buffs argue that it is the externalities that stem from the interaction of
the combined deterministic components that constitute the microfounda-
tions of the system that make Complex systems so interesting.?° Ergo, it is
thus (by definition) impossible to examine such externalities via reductionist
method.?! In the ensuing chapters we take an eclectic approach in stressing
that the externality potential locked up in each piece of information — which

16 For a comprehensive assessment of the plethora of fields into which Complexity
Theory extends, see Favre et al. (1995) and Mainzer (1997).

17 For an example of the application of Complexity Theory to traffic flows see Benjamin
et al. (1996). For an analysis of the Complexity principle across biology, economics
and physics in general, see Auyang (1998).

18 See Pascale et al.(2000).

19 Such arguments have not always been easily won — Arthur (1989) for instance had to
wait six years for his seminal paper on increasing returns in economics to be published.
Obviously the traditionalist/reductionist camp was vigorous in its defense.

20 Readers should note that we adopt the term “externalities” here in accordance with
the way the phraseology is used in economics — in particular, models of endogenous
growth —where “spillovers” from the interaction of various components result in a clas-
sic nonlinear “sum is greater than the component parts” outcome. See Romer (1986),
(1989) and (1990).

21 For example, observance of a single ant rarely provides insight into the overall oper-
ation of the colony as a whole. Likewise, observance of a single player in the market is
unlikely to provide insight as to the complete market’s macrodynamics. This holistic
perspective contrasts the traditionalist notion of “reductionism” in the sense that all
market dynamics can be interpreted through the observance of each agent in isola-
tion. A fascinating book on this topic of reductionism versus a holistic approach is
Swarm Intelligence: From Natural to Artificial Systems by Bonabeau et al. (1999). For an
outline of how this school of thought can be applied to a variety of phenomena, see
Johnson (2001).



42 Evolutionary Finance

we label as an informational “byte” can be best understood by examining
the microfoundations of how this information is produced and actually binds
together (in particular its sequencing). This is entirely sympathetic to the hol-
istic principles underlying the Complexity theorists’ cause. It is from these
microfoundations that we attempt to better interpret the nonlinear dynamics
observed in asset prices.

However, before concluding this section, one cannot stress enough that
one of the true beauties of Complex systems from a finance perspective is that,
as mentioned earlier, at times they display intermittent somewhat “noisy”
(read “random-like”) behavior, while at other times they display behavior
that is of a more predictable nature.?? In particular, Complex systems have
the appealing attribute of displaying periods of both low and high volatility
as they jump from one steady-state strange attractor to another. These bursts
of extreme volatility followed by periods of relative volatility quiescence have
an immediate analogous inference with observed market movements. Such
“volatility clustering” as it is known to those in the profession, is an endemic
feature of the time-series analysis of most asset prices.?* The fact that such
volatility (albeit at extremes at certain points in time) is bounded within
a finite range thanks to the “self-organizing” nature of Complex systems
makes this class of models particularly appealing to both the theorist and the
practitioner in attempting to explain this erstwhile perplexing phenomenon.
Indeed, if one is to further investigate the time-variant attributes of volatility
within Complex systems, one can identify epochs where substantial depar-
tures from near-Gaussian like distributional forms occur simply because one’s
frame of reference contains a relatively high number of “extreme events” as
the system jumps from one steady-state strange attractor to another. But
at other times a near-perfect Gaussian-like distributional form of returns
exists. Again, this Gaussian-like departure in distributional form for cer-
tain periodicities (where there can be a relatively high number of extreme
events) but more Normal-like distributional forms for other epochs (where
the “noisy” nature of Complex systems takes on more precedence) is an

22 The fact that Complex systems display such behavior has resulted in analogous ref-
erencing between hydrodynamic systems and (Complex directed) price systems. See
Ghashghaie et al. (1996) for an introduction.

23 See Sornette (2001) for a fascinating comparison between the predictability of
extreme volatility “clusters” in physical phenomena - such as earthquakes — and fin-
ancial phenomena. Sornette was able to identify that significant market events — such
as the 1929 and 1987 stock market crashes — were preceded by a sequence of “interme-
diate” events years in advance. Using the correct scaling techniques, Sornette was able
to detect the presence of associative nonlinearities in the financial system via inter-
temporal correlations in various dimensions (fractals). Indeed, the recent popularity of
event risk assessment programs such as Crashmetrics stands as testimony to the desire of
practitioners to better understand time-variant volatility — especially at the extremes,
see Wilmott (1998).
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appealing attribute of this class of “self-organizing” nonlinear models and
fits in nicely with our earlier observations of the empirical evidence on the
various forms of EMH.

Naturally, we have been lead into a discussion of distributional form under
Complex modeling. By way of background, a number of distributional forms
have been suggested by Complexity theorists as an alternative to the Gaussian
form in an attempt to better capture the short-term kurtotic behavior of Com-
plex systems but also their tendency to approximate to N(u, o) ast — oo and
the impact of the various jumps to alternate strange attractors gets effectively
washed out by the high number of observations. One interesting contribu-
tion comes from Mandelbrot (1963) who is perhaps best known for his work
on Chaos rather than Complexity per se. Mandelbrot suggested a stable Levy
distribution as an alternative to the Gaussian form given that — as desired — it
displays discernable kurtosis.?* One downside of this particular distribution
however is that it also suffers from infinite variance — which makes the inter-
temporal math unwieldy. Thankfully Mantegna and Stanley (1996, 2000) —
some of the founding fathers of the Econophysics school of thought — came to
the rescue in advocating a “truncated” Levy distribution which had most of
the appealing scaling attributes of the stable Levy distribution but had finite
variance as well.?5

The stable and truncated levy distribution

These distributional forms were originally described by Levy (1925) but their roots
reside in the workings of Pareto (1897) in his approximation of the distribution of
income. The characteristic “fat-tails” of such distributions arise in response to the
presence of an inverse power law (in Pareto’s case, the relationship between income
and the ability to generate wealth — in much the same fashion as Zipf distributions
have an inverse power law in describing the distributional frequency of words in
the English language). In essence, it is the presence of feedback between the under-
lying variables that contributes to the manifestation of such “fat-tails” — hence
the immediate compatibility of this form of distribution with Complex nonlinear
models. Levy characterized the generalized version of this particular distributional

241t is interesting that an arch advocate of the traditionalist (Gaussian distribution)
line of reasoning — Eugene Fama - also suggested such a distributional form. See Fama
(1965).

25 Econophysics is the application in finance of empirical techniques refined in Physics.
Its foundations go back as far as the 1940s with the publication of a paper by Majorana
(1942) highlighting the link between physics and the social sciences. Still, it can be
argued that the generalized approach of using tools developed in Physics to divine
the deterministic forces at work in financial data did not become “popularized” until
the 1990s. Readers should note however that the inspiration flow has not all been
one-way. For instance, notable economist Vilfredo Pareto’s (1848-1923) use of power
laws predates the use of such empirical analysis in Physics.
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form (known as the stable Levy distribution) with the following formula

Inif(p)] = i9p — 3[p|™ [1 i (%) tan (11 |2 })] oz,
(3.2)
2
In[f(p)] =iDp - 3|p/™ [1+ilﬂ(|%) ~In |p\] {1 = 1},

where

3 is the scale parameter (for instance, the difference between daily and weekly data);
I1I the skewness of distribution (note —1 < III < 1);

[T the peakness of distribution (note 0 < IIT < 2), and

D is the location parameter.

Altering the values of 3,111, Il and 3 in effect alters the characteristics of the
distribution. For example, when III = 1 the distribution is “fat-tailed” to the right
(the converse applies when I1I < 0). Under the special case of 1T = 0 and =0 the
distribution is both symmetric and stable with a probability density function

P = fo 3™ cos( prydp. (3.3)

But the true beauty of this distributional form is that in truncated form it displays
discernible kurtosis for small timescales, but it converges to Gaussian-like form for
larger timescales.?® This is because, Levy distributions emerge as a generalization
from the Central Limit Theorem. In short, Levy distributions are characterized
by the parameter III. So in the special case of III = 2,1IT = 0,3=1 and D=1 the
Levy distribution corresponds to the normal distribution with a probability density
function

1
Pr(p) = ﬁ

e P12, (3.4)

In terms of calibration, Mandelbrot (1963) and Fama (1965) effectively meas-
ured III ~ 1.7. This began an intense empirical debate centered on power law
measurement.?’” The reason for the lively debate? The Strong EMH/traditionalist
viewpoint effectively argues that III must always equal 2. The Complexity
Theory/Chaos Theory viewpoint is that 1 < III < 2 (since for O < III < 1 there is

26 An alternate distributional form — Student’s ¢ distribution — also displays this appeal-
ing “convergence to Gaussian” characteristic as n — oco. One potential problem with
this distributional form however, is that it is not stable for n # 1 (even though it is
finite).
27 put simply, power laws state that some quantity (K) can be expressed as a power
of another quantity (k). In effect, f((l&) = k¢ where c is the “power.” Expressed in
log terms - log KK = —clog k where c is the gradient of a straight line. In the earlier
section, it must be said that the transformation issues become a little more complex
as c is filtered through a number of additional variables but the basic concept remains
the same.
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no stable mean to the distribution). The outcome? Unfortunately (as was the case
with other attempts at empirically validating the various forms of EMH identified
in Section 2.4) it appears the empirical jury is still out — see Farmer (1999).

That said, one should note a practical problem of the stable Levy distribution
(even with 1 < IIT < 2) is that it displays infinite variance — the Fourier transform
of Equation (3.3) only results in a stable and symmetric distribution, it says nothing
about being finite.” Variance is only stable and finite for 11l = 2. As mentioned
earlier, a solution has been suggested —and, again as mentioned earlier, popularized
by Mantegna and Stanley (1996, 2000) —in the form of a truncated Levy distribution.
However, in doing so a compromise one has to make is that as is the case with the
Student’s t distribution, the truncated Levy distribution is finite but not stable (both
distributions however converge to Gaussian as the number of price observations
approaches infinity). The benefits remain however that given the truncation to
the Levy distribution there is not the infinite variance problem that plagues the
intertemporal calculus of the stable Levy distributional form.

So what to make of these alternate distributional forms? Without doubt, they
are certainly a step in the right direction as they do not suffer from the same
fallibility of the traditionalist finance/Gaussian framework in the sense that
they are imposed within the system via stringent assumption — the search
for fractal dimension is in a sense a search for the power law determinants
of these particular distributional forms. But it must be stated that this sim-
plicity comes at a cost. While it can be divined that the financial system is
necessarily deterministic in form (at least according to the empirical results of
some of the power law tests) there is little explanation as to why determinism
should be the case. In particular, there is little discussion of the underlying
microfoundations as to how investors necessarily come to make the decisions
in deterministic fashion. This is where our Evolutionary Finance approach
aims to fill a considerable void in the literature. Not only is the atomistic
creation of information and its biological-like molecular formation and dis-
persal perfectly suited to the microfoundation determinism of Complexity
Theory, but it also provides a framework for the derivation of superior empir-
ical techniques from the practitioner’s standpoint. This is simply because
we consider the entire information-set — technical, fundamental, economic,
political — and not just asset prices alone. We will discuss this issue in much
more depth in Chapter 5 where our all-encompassing evolutionary model
of the marketplace is presented. Likewise, in Chapter 6 we will develop our
own comprehensive approach toward distributional form modeling under
our Evolutionary Finance auspices. For the moment however, let us examine
in greater detail some additional “new” views as to the way investors actu-
ally interpret information in the “real world.” Here, the concepts of bounded

28 Infinite variance is a major pitfall for any distributional form chosen for modeling
return distribution as it implies infinite risk against which one is required to attempt to
form a price. This makes for an intractable problem in option pricing as risk no longer
cancels in the Black-Scholes equation via Delta hedging.
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rationality, heterogeneous agents and Behavioral Finance have made great
strides in challenging the traditionalist finance/homo economics (fully rational
agent) orthodoxy and it is toward this purview that we turn to next.

3.2 "New" view challenge no. 2: Bounded rationality,
heterogeneous agents and the Behavioral Finance school

What we have categorized as “new” view challenge no. 2 is all about the
demand-side - the investor’s experience — of information. It effectively rep-
resents an attempt to address at least “one-side” of the coin in dismantling
the edifice of stringent micro foundation assumptions that constitute the
basis of the traditionalist thought platform - the other side of the coin being
the supply-side of how information is actually generated (which in part, was
addressed in the previous section — at least in the sense that information
arrival is non-IID).?°
Let us assume for the moment that:

(i) not all individuals have access to the same information; or
(ii) that all the information that individuals require to make a “rational”
judgment (with the benefit of hindsight) is not always available when it
should be; or
(iii) that individuals have different risk preferences and/or abilities to inter-
pret information.

All the above open up a veritable Pandora’s Box of interesting human - and
financial — behavior for both the theorist and the practitioner alike. Min-
ing this rich vein of research has been a new breed of academic thinkers
(or in some cases, reformed members of the traditionalist finance school)
who have benefited from the appearance of purpose-orientated journals in
which to publish — such as The Journal of Psychology and Financial Markets,
the Journal of Behavioral Finance, the Journal of Economic Psychology and the
Journal of Behavioral Decision Making. Indeed, their efforts in such worth-
while endeavors are now starting to be acknowledged via the process of peer
review. Cases in point are the award of the 2001 Nobel Prize in Economics
to Messrs Akerlof, Spence and Stiglitz for their work on information asym-
metries and the award of the 2002 Prize to Messrs Smith and Kahneman for

29 Readers should note that studies of information interpretation go part way toward
developing a better understanding of the forces that govern the speed of information
dispersal — an integral part of our Evolutionary Finance approach which will be expan-
ded upon in greater detail in Chapter 4. Indeed, we argue that one of the beauties of our
biological-like molecular approach toward information formation is that it is actually
thoroughly consistent with the way neuroscientists have described the human mind’s
processing of information - a serendipitous outcome which we will elaborate upon in
greater detail in Chapter 4.
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their work on Human Judgment and Experimental Economics.*® Unfortu-
nately, as stated in the introduction to this chapter, much of this interesting
work still characterizes information as some intangible commodity with little
understanding of the true microfoundation building blocks of what investors
come to perceive as “information” in the first place — a shortfall which we
aim to address in Chapter 4 of this book.?! Still, it is an interesting field of
research and we thought we might start-off by highlighting one area that has
been receiving a considerable degree of attention in recent years - the field
of Behavioral Finance.

What exactly is “Behavioral Finance”? Let us begin with some defini-
tions. Some opt for a reasonably broad definition — such as Shefrin (2000)
who argues Behavioral Finance “is the application of psychology to financial
behavior.”32 We opt for a more precise definition in the sense that we believe:

Behavioral Finance is all about the fact that investors make mistakes.
They do not possess complete information, they are not equal in financial
ability, and their wants and desires alter. In other words, it treats investors
as though they are human.

The foundations of this field of thought are generally regarded to reside in
Kahneman and Tversky'’s (1979) seminal paper on Prospect Theory. Prospect
Theory espoused that consumers specify their value function in terms of
wealth rather than utility. This may not sound like much but the implication
of Kahneman and Tversky’s work was profound in the sense that it allowed
individuals to have a greater aversion to loss and a diminishing sensitivity
to return (either gain or loss) than would be implied under a pure “rational
expectations” framework. Needless to say, this formalization of a definite
skew within investors’ preferences had a pervasive impact upon the direction
of research in Behavioral Finance.??

30 For a link between these two fields of thought, refer to references on “Experimental
Game Theory” — for example, see Gintis (2000).

31 The obvious exception here is McFadden (1998) who went part of the way by study-
ing the link between the psychological concept of “perception” and information. He
even went as far as to categorize “information” into different forms. Alas, this analysis
still falls a long way short of an understanding of the true biological-like microfound-
ation elements of what comes to constitute “information” to investors — as will be
discussed in Chapter 4.

32 See H. Shefrin (2000) Beyond Greed and Fear: Understanding Behavioral Finance and the
Psychology of Investing, p. 3.

33In short, Kahneman and Tversky’s (1979) work highlighted the potential for
investors to attach nonlinear decision weights to certain outcomes. For example,
investors may attach a larger decision weight to a large loss than a small loss and
such weights may not reflect the true probabilities of specific events occurring (i.e.,
investors display a nonlinear preference set illustrating an “irrational” fear toward large
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But were Kahneman and Tversky truly the founding fathers of the field
of Behavioral Finance? This may be a polemical question but it should be
recognized that the applicability of full economic “rationality” as an appro-
priate assumption for all market participants at all points in time (and the
subsequent potential for market failure) has been an age-old debate in the
economics field.>* Indeed, we would argue that John Maynard Keynes was
in fact one of the first Behavioral Finance theorists — at least Keynes was one
of the first economists to popularize the analysis of investor misjudgment.®®
Keynes’ interpretations of herd behavior, investor myopia and the “greater
fool” theory of investing are now legendary. One frequently cited quote in
modern Behavioral Finance texts is Keynes’ beauty pageant analogy

professional investment may be likened to those newspaper competitions
in which competitors have to pick out the six prettiest faces from a hun-
dred photographs. ... It is not the case of choosing those which, to the best
of one’s judgment, are really the prettiest, nor even those which average
opinion genuinely thinks the prettiest. We have reached the third degree
where we devote our intelligences to anticipating what average opinion
expects average opinion to be. (Keynes, 1936, p. 156)3°

As will be explained in the following section, it is possible to formalize this
type of iterative decision-making process (if only at the metaphysical level)
using the principles of Game Theory.?” Indeed, our Evolutionary Finance
purview takes such a formalization of the investor’s time dependent assess-
ment of information (including the implications of competing investors
actions) to an even higher level by examining all information inputs -
technical, fundamental, economic and political — along with this inform-
ation’s strategic behavior inference. Certainly, we would favor Keynes’'
gradual/adaptive approach toward information processing rather than the

losses). This insight has permeated an entire range of research from explaining volat-
ility smiles to illustrating various deficiencies in standard Markowitz mean-variance
portfolio theory.

34 See Caldwell (1986) for an historical overview.

35 Other greats need to be mentioned here as well such as Marx and Schumpeter in
their analysis of the links between the shortfalls of capitalism (in particular, the pain-
ful consequences of the downside of investor’s, “irrational exuberance”) and business
cycles. See Marx — English translation — (1954) and Schumpeter (1939).

36 That said, it was Descartes not Keynes who coined the phrase “animal spirits.”
Keynes simply popularized the notion within the field of economics and finance. Rene
Descartes used the term to describe how humans come to interpret information in an
emotional fashion — in much the same manner that Keynes used the term.

37 Yet another field of thought awarded the prestigious Nobel Laureate in Economics —
this time in 1994 to Messrs Harsanyi, Nash and Selten for their work on
non-cooperative games.
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instantaneous adjustment process by omnipotent investors championed by
the traditionalist finance school of thought.

That said, before progressing onto the theory of games (especially Evol-
utionary Games) to explain such iterative decision-taking procedures by
investors we should at first ask the question - is there more we can say about
the “new” view challenge represented by the field of Behavioral Finance as
a rebuttal to the perfectly rational, homogenous investor norm championed
by the traditionalist finance school of thought?®® The good news is that —
yes we can. In particular, Behavioral Finance models come under a variety of
interesting names and describe a variety of interesting behaviors but basically
they can be broken down into either:

o the fallibility on behalf of investors since they adopt too simplistic a —
deterministic — rule of thumb for governing their investment decisions
given the presence of limited information (and, somewhat in a related
manner we would argue, the limited ability of particular individuals to
interpret information);® or

o the existence of nonprofit maximizing “irrational” behavior thanks to the
presence of heterogeneous utility functions. For example, Camerer et al.
(1997) illustrated New York taxi cab drivers proclivity to “clock-off” on
days of high activity — especially rainy days — which may appear “irra-
tional” to the outside observer under profit maximization principles but
was perfectly “rational” from a work/leisure preference standpoint for the
taxi drivers.

Certainly the first category of Behavioral Finance critique is of interest to us
given our biological-like molecular “information building” approach. Inter-
estingly from a Behavioral Finance perspective, this all-too-human investor
fallibility of using a too simple heuristic rule of thumb falls under the

38 This perfectly rational, homogenous utility function null hypothesis is some-
times defined as Expected Utility Theory (EUT) as popularized by von Neuman
and Morgenstern (1944). See Levy et al. (2000) for a critique of EUT along with a
comprehensive discussion of deterministic departures from EUT principles.

39 Note the presence of the terminology “deterministic” in this category. It is the
deterministic microfoundations of such heuristic rules of thumb that effectively forms
an intellectual bridge between Behavioral Finance type thinking and the Complex-
ity Theory models presented in the previous section — a framework built upon in the
“new” view challenge no. 3 models of artificial markets presented in the next section.
40 However, the identification of heterogeneous utility functions is not without its
pitfalls. Mertens and Zamir (1985) have illustrated differences in prior to what can be
argued is “public information” requires the inclusion of as many “agents” as there are
heterogeneous utility sets in a private information game. This increases the complexity
of equilibrium search considerably.
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“bounded rationality” umbrella.*! Bounded rationality implies that even if
one were a truly “rational” investor, one can only make decisions on the basis
of what one already knows — or in modeling jargon, the information-set avail-
able at time ¢. Hence, the “bounded” component to bounded rationality.*?
With the benefit of 20/20 hindsight, such decisions often prove to be “irra-
tional” given the advantage of the full (historic) information-set, but this
is the advantage of looking at decision-making in the ex post rather than
the ex ante. Indeed, this is why we insist upon placing inverted commas
when using the phraseology “rational” or “irrational” in this book simply
because such subjective judgments do not always reflect an investor’s mental
health but rather the limitations of human knowledge. In Chapter 4 we expli-
citly model this upper threshold on a human being’s information absorption
capabilities in response to the ever-expanding stock of information that is
continually thrust upon them. From a purely human point of view, how
do investors cope with this “information overload”? Behavioral Finance tells
us that in a world where time and cognitive resources are limited, human
beings aim to simplify information by adopting heuristic “rules of thumb” —
see Simon (1956).%3 It is when these information management devices known
as heuristic “rules of thumb” break down that many of the observed “irra-
tional” behaviors under the Behavioral Finance umbrella actually manifest.
But as stated earlier, making such judgments often relies upon a good dose of
“told you so” hindsight — which we might add, does nothing to endear the
academic cause to the practitioner community who frustratingly must make
such difficult (limited information) investment decisions on a regular basis.

In essence, what we are referring to here is a lack of “perfect foresight”
on behalf of investors. That said, we would extend the categorization to
include not only the mistakes investors make from failing to have all the
necessary information (including future information) to produce the correct
investment decision, but also the fallibility on behalf of investors stemming
from their inability to correctly understand the complexity of the existing
information-set as well. As we will demonstrate in Chapters 5 and 6, each
and every information-set possesses Complex nonlinear interrelationships
between its various components. It is well nigh impossible for the average

41 Sometimes “bounded rationality” is referred to as “quasi-rationality” — see Black
(1986) and Thaler (1994).

42 For a detailed exposition of the concept of bounded rationality, refer to Simon
(1982). But note, there is a difference between “bounded rationality” and “bounded
willpower” as outlined by Mullainathan and Thaler (2000) — they also add a third condi-
tion of “bounded self-interest” to describe the lack of altruism sometimes displayed by
economic agents.

43 Kahneman and Tversky (1979) further developed the key concept of “heuristics” —
simple rules of thumb that investors use to filter information. They identified “avail-
ability” heuristics as probabilities pulled out of recent memory and “representative”
heuristics as analogous inferences from the past.
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investor to understand (and more importantly predict) these dynamics at
each and every point in time given that up until now, a formal model of
the actual building blocks of information (and more importantly, how these
building blocks interrelate) has been notable by its absence from finance the-
ory. Ergo, it stands to reason that investors should be fallible (“bounded” if
you like) in their interpretation of the type of Complex nonlinear dynam-
ics presented in the previous sections when it comes to each and every
information byte’s arrival simply because they do not possess the correct
framework to actually understand the full consequences of this information.
The best investors can reasonably hope for under such circumstances is to
form reasonably limited projections as to asset prices based upon relatively
simple heuristic “rules of thumb” — a tact supported by the Behavioral Fin-
ance approach. Hopefully our Evolutionary Finance framework will leave
investors a little bit better informed as to the true inter-linkages between
various information signals which should (as a consequence) enable a higher
degree of sophistication within their decision-making. Fingers crossed, this
is the charter of our book.

But what of the more quirky/interesting behavior under the “Behavioral
Finance” banner that typically captures the imagination of the popular
media? What are some examples of more “aberrant” investor behavior that
has made the Behavioral Finance school of thought the darling of the week-
end financial press? Our survey from the literature in the box is far from
exhaustive but hopefully it will provide readers with at least some guidelines
as to what are the main investor fallibilities presented under the Behavioral
Finance banner.*

A Behavioral Finance “Investor Fallibility” list

Regret and cognitive dissonance. This type of investor behavior represents a classic
case of “living in denial.” The psychology of “regret” implies that investors may
be reticent to crystallize a loss due to the emotional pain of being wrong. As a
consequence, they have a tendency to defer selling assets that have depreciated
significantly in value or alternatively, sell assets early so as not to run the risk of
encountering such a loss — thereby avoiding “regret.”#> If such behavior is taken to
the extreme, “cognitive dissonance” occurs in the sense that investors will purpose-
fully avoid all news on a loss-making asset simply because of the emotional pain of
regret.40

44 For a nice overview of some of the more widely recognized Behavioral Finance mod-
els of investor behavior, see Shiller (1999) and Warneryd (2001). For a practitioners
standpoint, see Montier (2002).

45 See Shefrin and Statman (1985), Ritov (1996) and Josephs et al. (1996).

46 See for instance the classic Erlich et al. (1957) study of new car purchasers select-
ively avoiding reading car advertisements post purchase for fear of information of an
erroneous decision on such a large expenditure item.
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Anchoring.  This facet of Behavioral Finance concerns the power of “suggestion.”4”

Consistent with our analysis presented earlier, it concerns the use of deterministic
“rules of thumb” but also highlights that in an environ where true uncertainty is
pervasive (in the sense that history does not provide a reasonable guide as to prob-
abilistic outcomes) then investors are prone to broad association in forming their
investing “rules of thumb.” It is this tendency for broad association that can gen-
erate errors from “anchoring” to the wrong relativity. For example, if all stocks in
a given market appear expensive on a price/earnings (P/E) basis, then an investor
may be willing to (erroneously) accept a higher P/E on a given stock than would
otherwise be the case in forming their heuristic rule of thumb for investing.*® This
is a classic symptom of a “bubble” type mentality in equity markets.4’

Mental compartmentalization. This refers to the tendency for investors to com-
partmentalize assets into specific groups based upon superficial attributes. The
danger in this behavior is that investors fail to see the associative tendencies
between the assets in the different groups — a common fallibility our Evolutionary
Finance approach intends to overcome through our assessment of the inform-
ational impact of technical, fundamental, economic and political information
upon all assets within a given mandate (thus highlighting the potential for inter-
linkages between assets in response to given informational input). Hopefully, this
should raise investor awareness as to the true complexity of the informational
fabric but it is interesting that under the “mental compartmentalization” banner
it is also argued that investors appear to display surprising reluctance to alter their
overly simplistic classifications — even in the face of irrefutable evidence of the
need for reclassification.’® So while we may raise overall investor awareness, it
does not necessarily imply that all investors will suddenly drop their information
filtering mental compartmentalization rules. Hence the old maxim “you can take
a horse to water, but can’t necessarily make him drink.” This potential to “live in
denial” for those investors who choose to ignore the evidence that we provide as
to the Complex nonlinear inter-linkages that sometimes exist between informa-
tion and various asset performances will ultimately be to the benefit of those who
do take on board our sophisticated approach. This is simply because the presence
of “denial” investors implies there is plenty of opportunity for alpha-seeking for
those who do take on board our sophisticated informational analysis. Hence yet
another old maxim “to the lambs go the slaughter.”

47 See Tversky and Kahneman (1974).

48 Another example of this is forward FX market prices. Gruen and Gizycki (1993) have
illustrated that forward FX rates display considerable anchoring to present rates. This
remains the case even though present prices have been a poor predictor of the future.
While protagonists of the traditionalist school would argue this is a classic case of
random walk principles at work, the fact that investors continue to use forward prices
even though their forecasting ability record is appalling is indicative of the power of

anchoring in highly uncertain markets.

49 At times such erroneous anchoring may be driven by “new era” type thinking as
identified by Kindleberger (1996) where, in deference the Minsky (1982), Kindleberger
points out that the lead-up to a crisis is generally started “with a ‘displacement’, some

exogenous shock to the macroeconomic system.”
50 See Edwards (1968).
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Overconfidence, representative heuristic and over-/under-reaction. Though they are
often confronted with failure, investors as a class have a tendency to express excess-
ive confidence in their own judgments. This may be a Darwinian attribute of
financial markets in that “only the confident (or foolhardy) survive.”S! However,
one consequence of this phenomenon is that investors have a tendency to attach
too high an emphasis on the probabilistic projections of their own heuristic “rules
of thumb.” This can create over-reaction or under-reaction to the release of seem-
ingly innocuous financial information — again, a common investor response that
our Evolutionary Finance approach intends to better understand and possibly even
exploit in its applied mechanics demonstrated in Chapter 7. In fact, investor over-
confidence is so pervasive that the “invincible syndrome” can apply to seemingly
random information as well. For example, a coin-tossing experiment will generally
reveal 6 heads in succession or 6 tails in succession over 100 flips. It is possible that a
similar sequence of random informational events in the market can trigger overcon-
fidence on behalf of investors when aligned with investors priors. It then comes as
a rude shock when investors ultimately find out that their models are fallible — thus
provoking over-reaction or under-reaction depending upon each investor’s initial
position.>2

Magical thinking. Under conditions of uncertainty investors have a tendency to
form associations between nondependent outcomes somewhat related to the above.
As if by “magic” a particular outcome may become associated with a market event
and then it is possible that the two outcomes can become (erroneously) associated
within investor’s minds and therefore their deterministic rules — even though there
is not an economic or financial rationale for doing so. In many senses, investors
are vulnerable to “conditioning” much like Pavlov’s dogs. Here a classic experiment
was conducted by B.F. Skinner (1948) who starved pigeons and then fed them small
quantities of food at regular 15-second intervals.>3> The poor birds subsequently
began to develop abnormal behavior since they interpreted whatever they were
doing before the food arrived as the cause of the food'’s delivery. Obviously some
people get a kick out of doing this sort of thing (although one doubts whether an
eminent psychologist like Skinner did) but it does describe why some sports people
are very superstitious about a certain club, racket or even routine they follow before
they play. Investors too are vulnerable to such superstition-based conditioning —
which explains why certain proprietary traders can become very aggressive if the
cleaners have inadvertently moved items around on their desk.

As can be seen from the earlier discussion, once one makes a break from
the omnipotent/perfectly rational investor championed by the traditional-
ist finance school of thought, then all sorts of interesting investor behavior

51 We are not alone in espousing such a Darwinian “solution” to the market — see
Mullainathan and Thaler (2000). Indeed, to some extent, “overconfidence” and
“regret” are somewhat linked. The need to protect one’s self-esteem via avoidance
of “regret” can be seen as a necessary precursor to overconfidence — see Joseph et al.
(1996).

52 See Kroll et al. (1988) and Barberis et al. (1997) for examples of this.

53See Skinner, B.F. (1948) “Superstition in the Pigeon” jJournal of Experimental
Psychology, 38, 168-72.
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begins to present itself. We intend to leverage some of these principles in
our own Evolutionary Finance approach - especially in our applied analysis
presented in Chapter 7 of this book. But be warned, the traditionalists are
not taking the challenge lying down - as Fama’s (1998) rebuttal of Behavi-
oral Finance insights from the applied sense testifies. Obviously, upon reading
the various traditionalist finance criticisms of the Behavioral Finance liter-
ature, one soon realizes that a common misconception is that Behavioral
Finance simply describes the principles underlying the earlier identified pur-
suit of “noise trading” (see Chapter 2 for more details). However, one fact to
note is that Behavioral Finance theorists invariably argue that the principles
of human fallibility described within their field of thought are systematic
in nature. This implies that one can systematically make profits by capital-
izing upon such errors — thus negating the “noise trader” criticism by the
traditionalist finance vigilantes.

In concluding, since Behavioral Finance effectively argues that investors are
error prone because they adopt the wrong deterministic rules (they effect-
ively are informationally constrained), then the best Behavioral Finance
type of analysis will be that which identifies the rules that are currently
enforced by the investment community. If these rules can be identified,
then greater insight can be ascertained as to the potential for such rules
to go wrong. Indeed, this is a key principle of the strategy selection com-
ponent within our applied Evolutionary Finance approach (as identified in
Chapter 7). In this particular chapter we identify how winning strategies
“evolve” in a manner consistent with our biological-like molecular approach
toward information as a whole. The optimum strategy is therefore one
that identifies an overarching sequence of strategies that actually takes into
account the failure of investor’s deterministic trading rules. In essence, these
deterministic trading rules themselves can be regarded as a competitor’s
“strategy” and, like in a game of chess, our objective is to develop a set
of winning strategies that capitalize on the fallibilities of our competitor’s
strategies. Such over-arching time-variant “Evolutionary Stable Strategies” as
they are known form an integral component of the Game Theoretic ana-
lysis we will present in Chapter 6. However, before we can even attempt to
outline in greater detail the microfoundations of our biological-like inform-
ational approach toward the selection of Evolutionary Stable Strategies we
must at first do justice to the “new” view encapsulated by “artificial” models
of the markets. As we said in the introduction to this chapter, it is upon
the shoulders of giants that we have been able to potentially see farther
and certainly it has been the marriage of both the Complex nonlinear
microfoundations and the deterministic/heuristic rules of thumb presented
in Sections 3.1 and 3.2 respectively, that has enabled the study of artifi-
cial markets to flourish. Indeed, some of the recent modeling of artificial
markets has assisted us in our own Evolutionary Finance interpretation
of the way markets operate. So now, over to the recent studies on the
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principles of artificial markets — especially those focused on trading rule based,
evolutionary principles.

3.3 “"New" view challenge no. 3: Trading rules, evolutionary
games and artificial markets

The beauty of “new” view challenge no. 3 is that basically it is a summation
of the previous two sections. Effectively put “new” view challenge no. 1 and
no. 2 together and you have the antecedents of a deterministic/trading rule
based model of an artificial market. It’s as simple as (challenge) 1 +2 = 3.
For our purposes however, what we find particularly appealing about this
categorization of “new” view challenge models is their ability to provide a
framework for how information is both generated and interpreted within
“real world” financial markets — in obvious contradiction to the traditionalist
finance thought paradigm. Still, as mentioned in the introduction, it should
be emphasized that these studies continue to suffer from the fallibility of
treating “information” as a generic homogenous concept — a shortfall our
Evolutionary Finance technique aims to address in our own undertaking of
artificial market modeling presented in Chapter 5. But before we can even
begin to outline the broad attributes of such a model — and indeed, of artificial
models of the market in general — we must at first lay some foundations
by providing at least a cursory overview of Game Theory. This is because
the principles of Game Theory - and in particular, a certain class of Game
Theoretic models known as “Evolutionary Games” — reside at the very heart
of this final (artificial market) categorization of “new” view challenges.>*

So just what is “Game Theory” per se? Put simply, Game Theory is a math-
ematical representation of the strategic interaction between two or more
“agents” — each attempting to maximize a specific utility function and each
imparting information to the other through their actions. In many respects,
as our analogy earlier has already intimated, Game Theory is like a mathem-
atical formalization of the game of chess. Instrumental in Game Theory is
the extrapolation of not only the actions of oneself but also the actions of
others. In short, one needs to “forecast” an opponent’s reactions to various
contingencies. Here a military perspective comes to mind and indeed many
elements of Game Theory have found their way onto various battle plans

54 Furthermore, we aim to leverage some of the Game Theoretic principles presented
here in considerably more detail in Chapter 6 — where our deterministic informa-
tionally driven foundations of the marketplace are put to work in generalizing an
Evolutionary Distributional Form (EDF) for asset prices. Since the prerequisite know-
ledge required in Chapter 6 with regard to Game Theoretic principles is quite high,
we will spend a little longer outlining the “basics” in this section than we have in
outlining the theoretical underpinnings of the other “new” view challenges that have
been presented in the earlier sections of Chapter 3.
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over the course of the latter stages of the twentieth century — and those of
the early twenty-first century as well.

As for a brief history of Game Theory, it is generally acknowledged that
the popularization of Game Theory within academia arose with publication
of von Neumann'’s and Morgenstern’s Theory of Games and Economic Behavior
(1944). This seminal publication represented the first true comprehensive form-
alization of the subject.®> Since then, there have been innumerable additional
developments within the field itself — thereby deepening and widening the
applicability of the overall framework across a variety of alternate academic
realms of thought. Indeed, the uptake of Game Theory as an academic pursuit
in its own right has now risen to such a level where most postgraduate stu-
dents in the fields of Finance, Economics or even Mathematics inevitably find
a course in pure Game Theory a recommended (if not a compulsory) com-
ponent of their curriculum - much to the chagrin of some of those within
our younger generation. While by no means pertaining to be an exhaust-
ive overview, some of the notable developments within this field since the
publication of the Theory of Games and Economic Behavior include:

e 1950: the first formal experiment of the game known as “Prisoner’s
Dilemma” - explored in detail a little later in this section — by Melvin
Dresher and Merrill Flood of the Rand Corporation;>°

e 1950-3: John Nash - a leading figure in the field — publishes four sem-
inal papers that form the basis of the now famous “Nash Equilibrium” -
again, explored in detail a little later in this section — and the lesser known
axiomatic bargaining theory and Nash program solution to cooperative
games;>’

e 1953: the publication of Kuhn’s “Extensive Games and the Problem of
Information” sets out a framework that allows a more comprehensive
assessment of true Game Theoretic dynamics by highlighting the order

55 That said, it is noteworthy that there have been a number of scattered accounts of
the mathematical solution to various games throughout mankind’s written history. For
example, the Babylonian Talmud (a compilation of Jewish ancient law and tradition
set down during the first five centuries AD) sets out the preconditions for a particular
“marriage contract problem” where the division of a man’s estate among three wives is
discussed in considerable detail and a Game Theoretic solution is recommended - see
Aumann and Maschler (1985). Indeed, as early as 1713, James Waldegrave provided
the first known solution to a particular type of two-person game known as a “min-
imax mixed strategy” — see Kuhn (1968). In 1838 the brilliant mathematician Cournot
discussed preconditions for the solution of a particular duopoly problem that repres-
ented a restricted form of Nash Equilibrium - see Cournot (1838). And Zermelo (1913)
presented a mathematical formalization of the game of chess.

%6 For the original exposition of Prisoner’s Dilemma, refer to Tucker, A.-W. (1950) “On
Jargon: The Prisoner’s Dilemma” UMAP Journal, 1, 101.

57 See Nash (1950a, b), (1951) and (1953).



The "New” View of Finance 57

in which decisions are made by various players and the information they
possess when they make their decision;>®

e 1954: Game Theory is applied to the field of political science by Shapley
and Shubik - indeed, the Shapley value is ultimately used to determine
the relative power of the members of the UN Security Council.>’

1959: the notion of a Strong Equilibrium introduced by Aumann;®°
1960: cooperative Game Theory is made more widely applicable thanks
to the development of nontransferable utility games;®!

e 1961: Lewontin applies Game Theory as a means of describing evolution-
ary biology;%?

e 1966: Aumann and Maschler develop the theory of infinitely repeated
games with incomplete information;%3

e 1966: Harsanyi develops the now, most commonly used definition of
cooperative versus non-cooperative games — a game is cooperative if com-
mitments are fully binding and enforceable; a game is non-cooperative if
commitments are not enforceable;%

e 1967-8: over the course of three papers, Harsanyi constructs the theory
of games of incomplete information that ultimately lays the foundation
for information economics to become one of the major bridges between
“traditional” economics and Game Theory;%

e 1972: John Maynard-Smith develops the concept of Evolutionarily Stable
Strategy which presents the foundations for Evolutionary Game Theory;®®
and

o 1994: Nobel Prize in Economic Science awarded to John Nash, John C.
Harsanyi and Reinhard Selten for their contributions to Game Theory.

The areas that we are most interested in from this list given our evolutionary
approach toward the way in which information binds together in molecular
form within financial markets is the applicability of Game Theory to evolu-
tion itself — especially Lewontin’s and John Maynard-Smith’s seminal work. It
is here that the earlier mentioned principle of Evolutionary Stable Strategies
were developed — a concept we will draw upon heavily in Chapter 6. However,
before embarking on a discussion of these rather complex principles (and an
explanation as to why such games should provide part of the foundations

58 See Kuhn (1953).

59 See Shapley and Shubik (1954).

60 See Aumann (1959).

61 See Aumann and Peleg (1960).

62 See Lewontin (1961).

63 See Aumann and Maschler (1966).
64 See Harsanyi (1966).

65 See Harsanyi (1967-8).

66 See Maynard-Smith (1972).
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of our own “new” view challenge) we must at first provide a primer on the
mechanics of Game Theory in its most simple form.

Game Theory: The Basics

There is no means by which we can effectively summarize the full gamut of Game
Theoretic principles in an entire book —let alone a singular section within a chapter.
Given this obvious limitation, for a more comprehensive overview of some of
the principles of Game Theory, readers are referred to such excellent texts as
Osborne and Rubinstein (1994), Friedman (1991), or even the seminal publica-
tion on Game Theory itself, von Neumann'’s and Morgenstern’s Theory of Games
and Economic Behavior (1944).

Instead, the purpose of this book is to focus on the primacy of the fabric of
information - its biological-like molecular production, agglomeration and inter-
pretation by investing agents as information evolves from private to public realms.
As a consequence, we will only provide a cursory overview of what we feel is neces-
sary from Game Theory to explain the basic principles of the artificial market
stratum of this particular “new” view challenge and our own evolutionary (arti-
ficial) model of the marketplace presented in Chapter 5 — and in particular, the
microfoundations of this model presented in Chapter 6. Principally therefore, our
focus will remain on the criteria that we feel are important in understanding some
of the deterministic microfoundations of market transactions as it is this “core”
element of Game Theory that we will explore in detail in this section and which
forms an integral part of our own artificial model of the marketplace presented in
Chapter 5 and its microfoundations which are presented in Chapter 6.

To start with, it should be pointed out that in terms of a formal framework, Game
Theory is as simple as it is elegant as a tool of analysis. In essence, most games can
be represented concisely with the aid of a simple payoff table. The payoff table
(in general) represents the actions of a given player along the vertical axis and an
opposing player across the horizontal axis. Different cells of the table represent
different choices made on behalf of the respective players. The numbers occupy-
ing each cell represent the “payoff” that each player receives — as implied by the
combined choice of both participants.

Player Il

Action 1 Action 2
Action 1 (0,0) 1,2)
Player |
Action 2 2,1) (3,3)¢ Player Il payoff
A

Player | payoff

Figure 3.6 An example of a typical two-person game
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In Figure 3.6, Player I's payoff appears as the first number of each pair, Player II's as
the second. Measuring the “payoff” sometimes is difficult in a monetary sense and
this makes it necessary in some instances to invoke the concept of utility. “Utils”
represent the amount of satisfaction each player receives from the outcome of a
particular game when a dollar amount (or pounds, shekels, infantry or whatever
the chosen numeraire may be) is not an appropriate unit of measurement. Util-
ity theory was yet another fruitful product of von Neumann’s and Morgenstern’s
endeavors —at least in its cardinal form with the ordinal concept earlier developed by
Paul Samuelson (1938) in his explanation of Revealed Preference Theory.%” Indeed
the formalization of the utility function constitutes a substantial first stage com-
ponent in many studies within both the microeconomics and macroeconomics
field - and indeed, forms the basis of the initial equation in our own evolutionary
model of the marketplace presented in Chapter 5.8

So now we know how the game is played and what the game actually looks
like but the next question to ask is when does the game actually stop? The game
effectively stops when both respective players in essence decide (generally, but
not always, independently of each other) that they have achieved the optimum
outcome. This occurs when no player would be advantaged by making an alternate
decision based upon the given array of payoffs — remembering that the magnitude
of such payoffs relates in part to the other player’s actions. This equilibrium may
not represent the maximum possible payoff that a given player could potentially
achieve from the array of choices, but it is the highest risk/reward payoff that
they can achieve — with “risk” effectively constituting leaving oneself open to an
opponent choosing a course of action that would make you considerably worse-
off had you not chosen the equilibrium strategy.®® This “logic exhaustion” type
of outcome for both players is known as “Nash Equilibrium” after the solution by
the “beautiful minded” John Nash — and espoused across his four seminal papers
released over the period 1950-3.70

In our example, the Nash Equilibrium is represented by (3,3) - the lower right
hand cell. Why? Assuming Player I moves first, their optimal strategy is to pursue
Action 2 with a payoff of 3. As it happens, Player II also receives their maximal
payoff by pursuing Action 2 in such instances — a payoff of 3. Since Action 2 is still
the most preferred action for Player II even if Player I made a mistake and opted
for Action 1, we can say Action 1 is strictly dominated by Action 2 for Player II.

67 See Samuelson, P. (1938) “A Note on the Pure Theory of Consumers Behavior”
Economica, 5, 61-71. For an exposition on cardinal utility — particularly with reference
to its applications for games — refer to von Neumann, J. and Morgenstern, O.
(1944), Theory of Games and Economic Behavior, Princeton University Press,
Princeton, NJ.

68 For a comprehensive overview of utility theory (both past and present) refer to Levy
et al. (2000).

9 As intimated earlier, at times the calculation of one’s competitors’ actions may
require the formalization of what are known as “beliefs” — or “forecasts” as to how
competitors would respond to particular information. Such “beliefs”/“forecasts” are at
times conditioned by previous experience in “repeated games.”

70The term “beautiful mind” refers to biography by S. Nasur on John Nash - see
Nasur, S. (1994) A Beautiful Mind: A Biography of John Forbes Nash Jr., Winner of the
Nobel Prize for Economics 1994, Simon & Schuster, New York.
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A strictly dominated action never represents a Nash equilibrium since a Player could
do better by switching to the dominating strategy. If the payoff for Action 2 were
to be at least as great as that of Action 1 - irrespective of the choice of Player I —
then Action 1 is said to be weakly dominated by Action 2 for Player II. It is the
iterated elimination of weakly dominated strategies for both Players that results in
the identification of a unique Nash equilibrium in our example.”?

So what are the “basics” when it comes to mathematically formalizing a game?
In general, the following three specifications are made - either explicitly or
implicitly — before any mathematical Game Theoretic model is extended into a
specific task.

e The game is played by a set of players Z =1,2,...,z.

e Much of the actual “game” itself is represented by a set of St strategies where
players get to choose from a strategy range St = (sty, ..., st,) where st € St. This
is known as the strategy profile of the game.

e The key factor dictating the choice of strategy is the payoff function = — so np
represents a player’s payoff for choosing strategy b. In aggregate, this choice
of strategies ultimately results in the gravitation toward a (hopefully) optimum
solution for the players involved is represented by St — T (where T represents
the terminal node of the game).

The benefit from this considerable investment in notation is that concepts such
as Nash equilibrium become more straightforward — at least to the mathematically
inclined. For example, a Nash Equilibrium strategy st* can be defined in the relat-
ively simple terms that for each player Z = 1,2,...,z and every strategy st € St, a
payoff condition for Nash equilibrium is

wp(st*) > wp(sty, stp), (3.5)

given that we assume our stylized Player I opts for strategy choice B while our
stylized Player II opts for strategy choice Y. In other words, neither Player can
profitably deviate from their chosen strategy given the actions of the other Player.
Simple and concise.”?

So why do the principles of Game Theory necessarily form the foundations
for the artificial market “new” view challenge? Well, the short answer is that
they don’t - at least in their purest sense. Provided both players are fully
“rational” and fully informed of each other’s past and future actions then
Game Theoretic models are generally supportive of the traditionalist finance

’1Indeed in our example, the iterated elimination of strictly dominated strategies allows
for the identification of a unique dominant strategy equilibrium. Note: not all Nash equil-
ibria are necessarily unique.
72 Note: it was the formal proof of the existence of a (not necessarily unique) “Nash
equilibrium” for a mixed strategy that helped bring John Nash into notoriety — see
Nash (1950).
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thought paradigm that all market participants instantaneously and ration-
ally respond to the arrival of (random) information. In a sense, “rationality”
dictates some simple and predictable premises for individual action within
a Game Theoretic framework that can be used to augment the traditionalist
cause. For example, we generally prefer more relative to less (at least up to a
point), we (hopefully) are consistent in our choices both through time and
across a wide array of possible alternatives, and we generally seek a balance
between the cost of an action and the reward for that action. When married
with perfect foresight, these rationality dictums have been used extensively
by the traditionalists in furthering their particular purview as to how markets
operate — and in so doing, using Game Theory as a convenient framework to
formalize their views.

But hang-on, isn’t Game Theory supposed to also provide a framework
to challenge the reigning Strong EMH/traditionalist finance orthodoxy as
well? In short, it does both. Just as Game Theory provides a nice the-
oretical framework to support the traditionalist thought paradigm, so too
can the sword of logic be turned back on the traditionalists. By dismant-
ling the edifice of rationalist/fully informed agent assumptions, “new” view
protagonists were able to wrap the Game Theoretic framework around the
“bounded rationality” behaviorist/psychological based studies identified in
the previous section — such was the birthplace of the earlier cited relatively
new field of experimental economics and (somewhat synonymously) the
artificial models of markets that will be discussed in this section. However,
before describing this new view challenge in detail we must at first pause
for a moment to explore some of the more interesting applied implications
of assuming full rationality within a Game Theoretic framework (the box
below) before then going on to outline some of the principles underlying
intertemporal models of Game Theoretic behavior — particularly as they apply
to Evolutionary Games.

The applied pitfalls of “Rationality” within a Game Theoretic framework

The extremes of so-called “rationality” caused great consternation during the Cold
War. It was argued that the likely incapacity of a victim of a nuclear holocaust to
launch a retaliatory strike (and indeed, the fact that such a strike would not be in
their interest to do so as it would limit the habitable living space for the human race
to survive) resulted in the “rational” solution to the ensuing armaments build-up
being a “first strike” against one’s opponent — knowing full well that a “rational”
opponent would not retaliate.

Such a “rational” recommendation from the Game Theoretic models of the nuc-
lear arms race produced some rather bizarre results. For example, it has been argued
that President Nixon had the CIA try to convince the Russians that he was insane,
so that they’d believe that he’d launch a retaliatory strike even when it was no
longer in his interest to do so. Similarly, it has been argued that the Soviet KGB
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leaked fabricated medical reports regarding Brezhnev’s senility with the same end
in mind. Indeed, the infamous “doomsday device” was developed to break this
deadlock. This strategic solution equipped a worldwide fleet of submarines with
enough missiles to destroy the USSR, and arranged their communications techno-
logy in such a way that the US President could not be sure he would be able to reach
the submarines and cancel their orders to attack should any Soviet missile cross the
radar “trigger line” — thereby removing a first strike advantage. This unfortunate
outcome had the potential to occur even though a Soviet missile could have been
launched by “accident.”

While this may have eased the concerns of those familiar with the “rational”
Game Theoretic solution to the initial armaments build-up problem, it certainly
did not appease the concerns of the general public. Hence, Stanley Kubrick'’s classic
film Dr. Strangelove, where the world is destroyed because the Russians build a
similar doomsday machine and keep its incapacitation details totally secret from
the Kremlin. So when a mad American colonel launches missiles at Russia there is
little the respective heads of State can do but watch in dismay as the world is blown
up. Such are the logical pitfalls of assuming “rationality” — at least in the applied
sense anyway.

Now that we have covered the basics of Game Theory and of rationality
itself, we next turn our attention to Game Theoretic behavior from an inter-
temporal standpoint. Adding such a “time dimension” is crucial to forming
an understanding of the evolution of information (and its concurrent rela-
tionship to this particular artificial market “new” view challenge). In doing
so, our attention is drawn not so much to each players decision but instead,
their strategy. In short, how do players eventually gravitate toward a Nash
Equilibrium position — assuming one exists? What are the informational cri-
teria necessary for this to take place? Divining this is the secret as to how the
market actually does evolve through time toward (hopefully) some steady
state solution. To examine this intertemporal aspect of Game Theory in more
detail we need to break away from the concise representation of games - or
“normal” form games as they are known - and focus instead on a frame-
work that allows each sequential decision by the respective players to be
displayed.”® Such a framework is known as the “extensive” form of Game
Theory and the preferred tool of analysis for its representation is a “decision
tree” structure (see Figure 3.7).

In the Figure 3.7 decision tree each node represents a different stage along
the sequential decision-making process by the respective players as they
(hopefully) converge toward a steady-state Game Theoretic solution. Players
can converge to such a solution either via a “pure strategy” — seeking a single

73 This does not imply that normal form games cannot be dynamic in the sense that
they are unable to fall under the umbrella of “repeated games,” but rather normal form
games represent a concise summary of the end point of a game rather than giving a
complete description of how this end point is actually achieved.
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Player 1: Decision

Player 2: Decision

0,0 10,1 4,4 5,3

Payoffs

Figure 3.7 An example of an extensive form game

course of action to maximize risk/reward — or a “mixed strategy” — choosing
from an array of potential risk/reward optimal strategies (each dependent
upon some pre-assigned probability).”* Under such a schemata, the respect-
ive payoff functions for each player are displayed at each stage of the game
(below each node). Rational players choose the course of action that will res-
ult in the highest possible risk/reward payoff over the life of the game. This
(at times unique) solution represents Nash Equilibrium.”> The beauty for our
purposes of such a structure is that it allows for the visual representation of
the dynamic sequence of steps players can take toward the (hopefully con-
cisely summarized) solution - in other words, it has the potential to display

74 At this stage it is important to highlight to readers the clear distinction between
sequential and simultaneous games. A sequential game occurs where each player knows
the action of their competitor before they make their decision - in a simultaneous
game this is not the case. Note: it is not the temporal order of events that is important.
Rather, it is the flow of information that determines whether a game is classified as
sequential or simultaneous.

75 Notice we used the word “unique” to highlight that a Nash Equilibrium solution
contrasts that of a “strictly dominant” solution in the sense that Nash Equilibrium
refers to the highest possible risk/reward payoff over the entire life of the game and
not just to the highest risk/reward tradeoff at a particular stage of the game.
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the evolutionary decision path investors take in making their choices. Mathe-
matically, such calculations have obvious Bayesian probability connotations
in the sense that any payoff at a given node is contingent upon the array
of probabilities determining the outcome of earlier possible choices. This is
a concept often seized upon in projecting the potential array of solutions
under many artificial market models and indeed our own microfoundations
of an “artificial market” analysis presented in Chapters 5 and 6.

The difference between mixed and pure strateqy games

Mixed and pure strategy games can be easily distinguished within the concise math-
ematical framework we presented earlier. For instance, suppose a player has to
choose from pure strategies sty, ..., st, then a mixed strategy can be represented by
applying a probability distribution over sty, ..., st; so that

Pr = pristy + - -+ + prusty, 3.6)

where pry, ..., pry are all nonnegative and Y1 prp = 1 where B denotes the player’s
chosen strategy. If all the prg’s are zero except one (e.g., prp = 1) then Pr effectively
represents a pure strategy.

Assuming players choices are made independently of each other, then the payoff
function for a mixed strategy game can be defined as

7 (Pr) = Z Z Prst,Prsty, - - -, Prst,m(Sty, . .., Sty), 3.7)

styeSty stpeSty

where st; € $ty, ..., sty € St, represents the set of all strategies pursued.

Still, extensive form games (even taking into account the mixed versus pure
strategy distinction) represent but the “tip of the iceberg” when it comes to
intertemporal analysis within Game Theory. Of particular interest to most
“new” view artificial market protagonists are not just “one-shot” games where
each player’s strategy does not extend beyond the terminal nodes of the par-
ticular game in play, but also the concept of “repeated games.” Repeated
games occur where the same situation is revisited by existing players thus
allowing for the development of elaborate strategies where learning on a
player’s behalf can condition their “beliefs” of what a competitor may do
in response to a particular information signal. It is here that the concept of
limited (rather than perfect) information comes into its own and it is here
that a virtual cornucopia of interesting “bounded rationality” manifests.

For example, in the case of the ubiquitous “Prisoners Dilemma” game,
a repetitious scenario would engender a rational course of action as a “non-
confession” response on behalf of both prisoners. In short, both the prisoners
would learn that colluding is the best joint-strategy and (hopefully) develop
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an element of mutual trust.”® This is totally at odds with the static game
outcome that is so often cited in many an undergraduate textbook. In
a sense, a repeated game allows for the acquisition of more information
through the observance of a competitor’s action as they respond to actions
by oneself — and concurrent payoffs associated with each joint action. Such
learning allows players to formulate “reputations” for their competitors that
ultimately helps in future decision-making. As a consequence, a repeated
game — via its allowance for repetition — allows limited information players to
gradually “learn” much of the information that perfect foresight individuals
are assumed to possess at each and every moment in time.

This convenient framework thus represented a perfect theoretical
foundation for contrasting the instantaneous perfect foresight investment
outcomes assumed under the traditionalist finance theoretical framework
vis-a-vis the more realistic “bounded” informational world where there is
an obvious dichotomy between public and private information. As a con-
sequence, a diverse array of interesting strategic behavior was thus able
to be explored as information itself (via one’s actions) effectively became
a bargaining chip in a repetitive game. We will use precisely such stra-
tegic reckoning in our modeling of the analyst community’s choice of topic
for information byte production as we develop the microfoundations of
our own evolutionary model of the marketplace in Chapter 6.”7 For the
moment however, let us provide a little more background on the concept of
“Prisoner’s Dilemma.”

A ubiquitous game — Prisoner’s dilemma

Suppose that the police have arrested two people whom they suspect have com-
mitted a crime. A detective makes the following offer to each prisoner: If you will
confess, implicating your partner and providing police with further information
about the crime, and your partner does not confess, then you’ll go free and he’ll get
four years. If you both confess, you'll each get five years. If neither of you confess,
then you'll each get two years for the crime.

Assuming the prisoners are kept apart and cannot collude, there is an overwhelm-
ing desire to “rat” on one’s accomplice in the sense of being the first to confess
and thereby getting off “Scot-free.” The “rational” decision for both prisoners is
therefore to confess (hoping their partner does not) but in doing so they will both

76 For an example of such an “adaptive” version of Prisoner’s Dilemma, refer to Kreps
et al. (1982) or Holland (1995).

77 That said, when exploring the microfoundations of analyst behavior in Chapter 6,
we opt for what are known as “Evolutionary Games” where reputations are built not
through a sequential revisiting of the “game” between rival analysts but rather reputa-
tions are built via the format of the information bytes that analysts produce. We will
discuss the concept of Evolutionary Games a little later in this section.
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Prisoner 2

Confess

Refuse

Years in prison

Years in prison

Prisoner 2: 0 yrs

Confess Prisoner 1: 5 yrs Prisoner 1: 0 yrs
Prisoner 2: 5 yrs Prisoner 2: 4 yrs
Prisoner 1
Years in prison Years in prison
Refuse Prisoner 1: 4 yrs Prisoner 1: 2 yrs

Prisoner 2: 2 yrs

Figure 3.8 The prisoners dilemma conundrum

suffer the maximum penalty - represented in the upper left cell — of five years in
prison. The “deal” works well for the police since in this way they get the maximum
information about the crime (both prisoners offer additional information as they
confess) and both the villains end up behind bars for the maximum duration. A
“win/win” for the police, a “lose/lose” for the criminals.

But what of our earlier mentioned “Evolutionary Games.” Evolutionary
Games are basically “repeated games” with the added condition that the
actual rules of the game are dynamically changing — or evolving — through
time. Interest in this field first gained recognition with the pioneering work
of John Maynard-Smith (1972). However, it was not until with the public-
ation of his latter book — in 1982 - that the concept appeared to garner
wider appeal. Maynard-Smith’s work focused on using Game Theory as
a means for explaining evolutionary biology — a nice fit with our own
pioneering methodology. In short, he identified genes as “players” in a
repetitious game - a serendipitous insight which has strong parallels to
the micro-component informational modelling framework we will present
in the following chapter.”® For Maynard-Smith, a successful strategy under
Game Theoretic conditions where the rules of the game are constantly

78 See Maynard-Smith, J. (1972) “Game Theory and the Evolution of Fighting” On
Evolution (John Maynard-Smith), in pp. 8-28, Edinburgh University Press, Edinburgh;
and Maynard Smith, J. (1982) Evolution and the Theory of Games, Cambridge University
Press, Cambridge.
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changing through time can be defined as that course of action that had the
highest potential for replication — again, a seminal insight that draws upon
Darwinian principles of natural selection and indeed will be used extensively
in our Evolutionary Stable Strategy search presented in our distributional
form analysis (Chapter 6) and our applied analysis (Chapter 7).

But what precisely do we mean by “highest potential for replication”?
According to Maynard-Smith, a steady-state — or, using the correct termin-
ology, an “Evolutionary Stable Strategy” — would occur when no individual
gene (Player I) playing one strategy could improve its reproductive fitness by
switching to an alternate strategy and no “mutant” gene (Player II) playing a
different strategy could establish itself (“invade”) the existing population.”’
Subsequently, this outcome represents the best over-arching strategy for the
Player I gene simply because its reproductive fitness is greatest by following
the prescribed Evolutionary Stable Strategy set of decision rules. Supplanting
“genes” with analyst information bytes, memetic strings of information or
even entire trading strategies allows us to extend Maynard-Smith’s powerful
equilibrium concept into an array of intertemporal (evolutionary) decision-
making within our own evolutionary model of the market where the rules
of the game are constantly changing. Indeed, it should be recognized that
up until the formalization of Maynard-Smith’s equilibrium mindset, what
could be classified as “new” view challenge no. 3 could only be regarded as
being in its infancy simply because try as they might, “new” view modelers
of games of limited information (like ourselves) ran into intractable prob-
lems at the intertemporal/repetitious game level. This was because, as stated
earlier, from a theoretical perspective “learning” by investors in response to
new information implied the rules of the game were constantly changing
across time. The traditionalists thus had the upper hand when it came to
intertemporal modeling of strategic-like investment decision-making beha-
vior along the lines extensively documented within Merton (1992). All this
changed with Maynard-Smith’s insights (especially those in regard to equi-
librium) and “new” view challenge no. 3 was thus able to fulfill its destiny in
becoming a veritable hotbed of academic endeavor — much to the dismay of
some diehard traditionalists.

79 Non-kin altruism — in the sense that an organism voluntarily lowers the expected
fitness of a chosen strategy to promote the success of another organism —is an interest-
ing contradiction to this rule of “success.” At times this appears to occur in nature and
is at odds with a pure Darwinian solution. Reciprocal altruism — where self-interested
individuals adopt a cooperation stance in a repeated game to build a “reputation”
that ultimately works in their favor - is better understood and occurs frequently in
primates — see Trivers (1971), Byrne and Whiten (1988). The sacrifice of resources
to promote the chances of survival for one’s offspring is totally consistent with the
concept of developing an Evolutionary Stable Strategy and occurs relatively routinely in
nature — see Daly and Wilson (1983).
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But were there any additional benefits? Indeed, there were. For starters,
apart from the obvious Darwinian beauty of such a simple solution mechan-
ism for the selection of an optimal evolutionary strategy, an added advantage
of Maynard-Smith’s concept of equilibrium was that it lowered the onus upon
“rationality” as the dictum via which players make choices. In short, the pur-
suit of an Evolutionary Stable Strategy was a pure “survival of the fittest” type
of solution mechanism — a beautiful result that guides much of our strategic
modeling. Gone was the excess baggage of mapping utility functions in an
endeavor to homogenize investor decision-making. Rather, a much simpler
premise reigned supreme in Maynard-Smith’s world — survival. It was the
ability to survive to play another day that drove many of Maynard-Smith’s
outcomes and it was this, combined with the associated ability to allow for
the presence of limited information, that ensured Evolutionary Game Theory
a place at the theoretical high table in explaining some erstwhile perplexing
investor behavior (in particular, behaviors of similar nature to those outlined
in the previous Behavioral Finance section). It is for this very reason that we
have seized upon this methodology in our strategic modeling presented in
the ensuing chapters.

For example, a ubiquitous element in most market interchange is the pres-
ence of asymmetric information — that is, the information-set of buyer and
seller is not identical.®’ Under such conditions strategies need to be developed
that either:

1 leverage the information benefit one possesses; and/or

2 attempts to offset any informational deficiency one has by developing a
particular strategy aimed at getting a better informed individual to “reveal
their hand.”

Many artificial models of markets are based upon attempting to explore
the dynamics of such strategic informational exchange.®! To do this, many
artificial models of the market split the investment community into two
“warring tribes” — sometimes labeled as “technicians” versus “fundament-
alists.” The model is then calibrated to observe the evolutionary phenomena
of buy/sell interaction between the two contesting fields of thought as the

80 As Malkiel (1996) argues, some elements within the field of research known as “tech-
nical analysis” are fundamentally based on the premise of asymmetric information.
That said, it seems somewhat ironic that this more “realistic” interpretation of true
market behavior — that of unevenly informed agents — should be labeled by the finance
profession as the study of “market imperfection” when it is actually a more accurate
reflection of the true state of private/public information dispersal at any given point
of time.

81 One of the most famous of which is the Santa Fe Artificial Stock Market Model so
named after the august Santa Fe Institute situated in New Mexico in the USA - see
Arthur et al. (1997).
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comparative informational advantage of one group versus the other waxes
and wanes in response to a series of (generally exogenous) informational
shocks.®? Indeed, the modeling of the “survivability” of particular trad-
ing rules under such conditions forms much of what can be categorized
as “artificial market” studies per se. Even the term “Evolutionary Finance”
has up until the publication of this book has been generally associated with
a particular brand of such models and we indeed use such principles in
our own microfoundation modeling presented in Chapter 6.8 That said,
as intimated earlier, we ultimately view this particular definition of “Evol-
utionary Finance” as limiting as it appears to be focused more on the
practice of Genetic Algorithm/Genetic Programming techniques than our
own “structured information” purview. In particular, we would argue that
“Evolutionary Finance” as a thought paradigm should be motivated more
by trying to better understand the biological-like molecular foundations of
the way information is produced, agglomerated and interpreted within fin-
ancial markets than on calibration studies alone. Calibration, while useful,
is not an ends in itself and our own work attempts to “dig a little deeper” in
the Evolutionary Finance genre by exploring the synergies between the way
information is categorized and modeled in the biology/genetics sphere and
the way the actual fabric of information can be better understood within the
finance profession.

That said, it must be said that the work that has been done to date in
the field of artificial markets — even that done under the “Evolutionary Fin-
ance” banner - has been extremely useful in dismantling some of the more
outlandish belief structures perpetuated by the traditionalist finance school
of thought. Thanks to this “new” view challenge no. 3 many microfound-
ation models of markets now have entirely new principles underlying their
construction.®*

e For starters, as consistent with our Game Theoretic discussion presented so
far, many artificial models of the market presently purview the “market” as
a repetitious game between a number of players (investors) with the mar-
ket price being the reflection of the interaction between the participants
of the game.%

e Further, such models typically allow players to learn from their com-
petitors behavior and to build-up “reputations” of likely actions from
competitors in response to certain price information or actions on behalf

82 See Brock et al. (1992) or Darley and Kauffman (1997) for excellent examples of this.
83 For examples of this earlier work under the “Evolutionary Finance” banner refer to
Farmer and Lo (1999) and Hens, Schenk-Hoppe and Stalder (2002).

84 For a comprehensive overview of the general principles underlying artificial market
models see Brock (1997).

85 See for instance Jefferies et al. (2002).
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of the player’s themselves. In fact, many trading strategies embedded
within such models are built upon these preconditioned “beliefs.”86

e Also, within this particular field of research it is generally regarded that the
objective of the market “game” is replication as consistent with Maynard-
Smith’s musings. That is, once their position is set, market participants
want as many people as possible to “buy” into their particular investing
thematic thus perpetuating their idea “gene” and forcing the market price
in a favorable direction — a tact we will build upon extensively in our own
(evolutionary) artificial model of the marketplace.

e From a holistic standpoint, such artificial market models with trading
rule-based microfoundations have an overwhelming tendency to be
deterministic rather than stochastic in foundation and therefore provide
a natural fit with the Complexity Theory principles espoused in “new”
view challenge no. 1.

e Finally, consistent with Evolutionary Game Theoretics, many models of
artificial markets allow for the rules of the game to be constantly evolving
in the sense that institutional arrangements, response functions of the
various players, the players themselves, or even the choice of market
instrument - equity, convertible, option and so on - all undergo signi-
ficant change through time as players adopt the most effective strategies
to influence price. In other words, “optimal” trading strategies are in a con-
stant state of adaptation and evolution in response to a constantly changing
market environ.?” Again, a tact we will build upon extensively in our own
(evolutionary) artificial model of the marketplace.

As we said at the start of this section, it is the convenient marriage of both
Behavioral Finance-based heuristic deterministic rule-based microfounda-
tions, along with a holistic nonlinear perspective that is analogous to the
work carried out under the Complexity Theory banner, which implies “new”
view (challenge) 1+ 2 = 3. Deterministic models of artificial markets — espe-
cially those that are “evolutionary” in their principles — come part way toward
providing a framework consistent with our own Evolutionary Finance pur-
view but still fall short by failing to explicitly take into consideration the
actual texture and fabric of information itself. To truly understand “real
world” financial markets, one needs a comprehensive framework for assessing
how the microfoundations of market sensitive information are built “from
the ground up.”

86 Our own “artificial model of the market” however, adopts a different approach in
that reputations are built on the format of the information bytes that analysts produce
and not through “learning” behavior per se.

87 Indeed, even some traditionalists begrudgingly acknowledge that the market is in a
constant state of evolution — although they use this as a reason why not to engage in
active investing. See for instance, Malkiel (1996).



The “"New” View of Finance 71

Which leads us quite nicely into the next section - just where does our
own interpretation of Evolutionary Finance fit into the existing “new” view
genre? What is our contribution relative to the studies that have preceded
us? As will be outlined in the following section — and indeed, discussed
in great detail for the remainder of this book — we intend to pursue the
biological-like/evolutionary analogy toward the market in much greater
depth than any of our forebears via our comprehensive molecular model-
ing of the actual micro building blocks of information itself. As stated earlier,
our own purview of Evolutionary Finance is much more structured and deep
relative to earlier usage of the terminology. Indeed, we feel the examina-
tion of “information” not as a texture-less generic concept but rather as a
constantly evolving entity of which there are a colorful array of different
hierarchies and classifications (from bytes, to memes, to themes, to overall
market sentiment) represents a complete watershed for financial thinking —
and in particular, for applied finance “best practice” as well.

3.4 So where does Evolutionary Finance fit-in to the
“new” view genre?

Having spent years in “real world” financial markets observing the galling
frequency with which many practitioners have given little accordance to the
labors of earlier academic thinkers stretching the limits of the knowledge
horizon, we are again at pains to point out that without such enduring aca-
demic efforts our own purview of Evolutionary Finance could not have been
born. We reiterate once more that in true spirit with Sir Isaac Newton’s maxim
“If I have seen further it is by standing on the shoulders of giants” that we
have benefited immensely from such academic insights. But likewise we feel
our treatise represents a significant advance upon the analysis that has pre-
ceded us given that we go to the very heart of the evolutionary way in which
the diverse array of information that exists in the marketplace at any one
point in time somehow comes together in a meaningful manner to influence
asset prices. We illustrate how this information (and the analyst community
that produces it) has a natural tendency to bind into separate clusters so that
the overall asset price impact is decidedly nonlinear. Indeed, the institutional
structure that investors have created in financial markets not only condones
such an outcome but actually enforces it as well.

Do we draw upon any particular “new” view paradigm more than the
others in forming such a viewpoint? Certainly in Chapters 5 and 6 — where
we present our own evolutionary (artificial) model of the marketplace and
its subsequent distributional form implications — we leverage extensively
from the academic literature categorized as “new” view challenge no. 3.%8

88 Indeed, as stressed earlier, up until the publication of this book the term “Evolu-
tionary Finance” had generally been associated with artificial market models where a
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But likewise, our model draws heavily upon the principles of Complexity
Theory and nonlinear dynamics as well — which were outlined in “new” view
challenge no. 1.% In addition, as we are by default making the distinction
between public and private information in the evolutionary information pro-
duction framework presented within this model, we are also forced down the
path of “bounded rationality” as espoused in “new” view challenge no. 2.
Ultimately, we use this concept to some effect in our later modeling of the
strategic decision-making on behalf of the analyst community presented
toward the end of Chapter 5 and over the early to middle stages of Chapter 6.

To conclude therefore, rather than confine ourselves by saying that our own
purview of Evolutionary Finance is beholden to any one “new” view inter-
pretation, we prefer to argue that what will be presented in the following
chapters represents the fruit borne from an eclectic mix of the components
within each of the “new” view challenges 1, 2 and 3. Information, market
structure and investor behavior are all inexorably intertwined. Our insights
and modeling presented in the following chapters reflect this. We would
only add that too much time and effort has in the past been devoted to mar-
ket structure and investor behavior and not enough on the actual fabric of
information itself. It is here that our greatest contribution resides — simply
through our modeling of the creation and formation of information into a
structured array of bytes, memes, themes and even overall market sentiment
as being the outcome of a biological-like molecular evolutionary process.
The basics of this new paradigm for understanding the centrality of inform-
ation in financial markets will be outlined in Chapter 4. We hope you find it
interesting.

process of “natural selection” screened for the emergence of evolutionary dominant
trading strategies. Our own purview of Evolutionary Finance drills much deeper into
the evolutionary genre of financial markets — especially as it applies to information (as
Chapter 4 will amply illustrate).

89 In fact, the link between information and nonlinear dynamics was explored in the
late 1970s and early 1980s by a group who Gleick (1998) labels as the “Dynamical
Systems Collective” of whose principle members were Robert Shaw, Doyne Farmer,
Norman Packard and James Crutchfield. Still, this group viewed “information” as a
generic concept — an intangible input into their dynamic system of equations and not
the diverse evolving entity as we define it.
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The Mechanics of Modeling
Information as an Evolutionary
Process

As stated in our introduction, it is the ambition of this book to move away
from treatment of “information” as a generic term and look at the actual
microstructure of information itself. For example, what are the underlying
building block components that make up what we as investors perceive to be
information, how does this information come together in a meaningful way,
what incentives are there for analysts to produce this information and what
are the feedback mechanisms in the analysts choice of topic? All are worthy
questions that will be answered in due course. Indeed, this chapter houses
the “boiler room” of answering the first two conundrums. We do this via the
establishment of a framework for understanding the actual building blocks of
information — piece-by-piece. Then we go on to investigate the consequences
of our approach. As we have hinted at upon numerous occasions in the
preceding chapters, we believe there is an analogous link between the micro-
foundations in the treatment of information in the evolutionary/biological
sphere and the treatment of information within financial markets. It’s just
a matter of drawing this striking similarity to the academic community’s
(and investor’s) attention. Once this is done, a whole host of interesting
results manifest.

As we have said before, we believe the “idea” and the “gene” have a lot
in common. In fact, we feel that some of the more exciting recent devel-
opments in genomics and bioinformatics have much to offer the fields of
finance theory and finance practice.! It is the purpose of this chapter to lay

In fact, we feel this cross-fertilization between disciplines is as potentially
path-breaking as the (much older) hybridization between biology and physics — see
von Bertalanffy (1950) and Kremyanskiy (1960) but also the early stages of Glaser
(2001) who gives nice historical perspective on the fascinating field of biophysics. Fur-
ther, our assertion should not surprise those familiar with much of the details of the
“new” view finance literature — some of which has been documented in Chapter 3.

73
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the foundations of this revolutionary evolutionary way of thinking via a
thorough investigation of the actual texture and fabric of information itself.
So where to start? Well, even diehard traditionalist finance theorists would
agree that information and price are inexorably linked - after all, such a
premise forms the basis of their much-loved “fair-game” model. So model-
ing the “production” and “consumption” of information must be the first
port of call in any attempt to develop a wider understanding of the market
process itself. But in doing so, one must at first appreciate how the indi-
vidual components of information necessarily bind together. In short, if
one is to walk away from the simplistic assumption that information arrival
is IID, then one must ultimately have some mechanism for understanding
how the various “bytes,” “memes” and “themes” of our information cat-
egorization somehow interrelate until a cohesive whole of overall “market
sentiment” is formed. In essence, what we are in effect looking for is a
financial market equivalent of Watson and Crick’s double-helix — a struc-
ture around which smaller components of information can assemble to form
larger informational entities.

It is here that our earlier stated serendipity of the complementarities
between the “idea” and the “gene” plays its all-encompassing role. Draw-
ing heavily upon the seminal insights of Dawkins, Farmer, Gould and
Kauffman we highlight how the deterministic building blocks of finan-
cial information come together in much the same way that the C, A, G,
T nucleotides form the complex genetic coding of DNA and from this,
even larger entities. Once these elementary building blocks of inform-
ation and market pricing are well understood, then one has a much
better appreciation of the driving forces behind market dynamics over-
all. Indeed, once this fundamental realization is made that information
and pricing are ultimately the outcome of an evolutionary biological-like
molecular process then one can better appreciate that the entire “market”
as we know it is largely defined by its information servicing criteria — its
production, its dispersal, its interpretation and consumption. That said,
before we can even attempt to outline such an ambitious multifaceted
philosophy toward the informational foundations of the marketplace we

For instance, Farmer and Lo (1999) highlighted that Darwin cited both Thomas
Malthus and Adam Smith as sources of inspiration for the principle of natural selec-
tion. Ergo, the analogous relationship between finance and biology should be seen as
something of a revisit (albeit from a different direction of causality) to an age old
idea. Thankfully, recent developments in the bioinformatics area have allowed us
to pursue this dream. Indeed, it is somewhat surprising that it has been less than
100 years (since 1909 to be precise) since the British biologist William Bateson first
gave the science of inheritance a name — genetics. Without the rapid development in
understanding in this area since then (and its concurrent formalization) we would not
have been able to pursue the hybridization between biology and finance as pursued in
this book.
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must at first categorize the actual evolutionary building blocks of inform-
ation itself.

4.1 Evolutionary information basics: Memetics and the
contribution of Richard Dawkins

Let us start by stating right from the outset that we by no means want to
leave readers with the impression that an evolutionary perspective toward
information is necessarily an entirely new phenomenon. Rather, our task
here is to formalize the concept within the finance literature — building upon
some of the seminal work that has already been completed to date. In par-
ticular, there are plenty of academic giants who have previously likened
meta-physical concepts to formal evolutionary processes — Sir Karl Popper
and Herbert Spencer come immediately to mind. Indeed in the finance world,
Doyne Farmer and Andrew Lo have perhaps came closest — but certainly not
the full way — toward our own evolutionary approach and consequently both
have played a decisive role in shaping our thoughts.? That said, the first
“giant” upon whose shoulders we will rest for a short while is Sir Richard
Dawkins from Oxford University. Why? In his book The Selfish Gene (1976)
Professor Dawkins devotes an entire chapter to the analogous links between
biological evolution and cultural evolution.? In particular, Professor Dawkins
coined the concept of “memes” as the analogous metaphysical cousin to the
ubiquitous gene.* A serendipitous insight from which we will leverage upon
extensively in the ensuing pages.

What exactly is a “meme”? Well, according to Blackmore (1999) who has
written extensively on the subject, a meme is “An element of culture that may
be considered to be passed on by non-genetic means, esp. imitation.”> It is
the latter “non-genetic” part of this definition that would-be Evolutionary

2 What differentiates our analysis from Farmer’s and Lo’s however, is our specific con-
centration on the centrality of information - in particular, information driven by
evolutionary forces — within financial markets. This prime (informational) focus of
our work has allowed us to drill much deeper in exploring the analogous link between
evolution in the biological world, and evolution in the financial world. We do this
by modeling the biological-like molecular componentary of financial information
itself — thereby providing a formal evolutionary microstructure to explain an observed
evolutionary macrostructure within financial markets.

3 Indeed, the analogy also extends to human language. To quote Watson (2004) p. 254
“There are, of course, the obvious parallels between genes and words.”

4 As Professor Dawkins (1976) p. 192 put it “We need a name for the new replicator, a
noun that conveys the idea of a unit of cultural transmission, or a unit of imitation.
‘Mimeme’ comes from a suitable Greek root, but I want a monosyllable that sounds a
bit like ‘gene’. I hope my classicist friends will forgive me if I abbreviate mimeme to
meme.”

5 Even Darwin acknowledged the genetic nature of culture — “A language, like a species,
once extinct, never reappears” (Darwin 1859, p. 422).
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Finance theorists find potentially the most puzzling — particularly given our
discussion to date. Does this represent an apparent contradiction to our
cause of more thoroughly exploring the analogous genetic-like links between
modeling physical evolution and modeling information evolution? To cla-
rify Blackmore’s view we decided to refer back to Professor Dawkins seminal
text The Selfish Gene. Upon doing so, it is soon made only to clear what is
the source of the apparent confusion. Professor Dawkins was continually at
pains to divorce readers of the notion that somehow cultural evolution and
genetic evolution are irreconcilably intertwined. That is, he did not wish
to leave readers with the impression that a certain society’s gene pool ulti-
mately determines its cultural, scientific and economic success. Hence the
“passed on by non-genetic means” inclusion in Blackmore’s definition of a
meme. In particular, one should be clear that while it is acceptable to argue
that there are obvious analogous links between metaphysical and physical
models of information transmission, it is anathema to attempt to extend the
analogy much beyond this. Taken to the extreme and linking actual cultural
evolution with genetic evolution is a potentially explosive issue. This is espe-
cially the case given the twentieth-century problems in the Western World
with eugenics, Nazism, global warfare and so on. Far better to concentrate on
the analogous links between the models themselves and not get drawn into
polemical interpretations of the actual hard and fast policy implications of a
broad-ranging analysis between genetic and metaphysical evolution. Given
our particularly narrow frame of reference in only dealing with the treat-
ment of information in financial pursuits, it is hardly likely that we could
be accused of falling into such a trap. Indeed, we stress that our focus on
the analogous nature in which information is produced, dispersed and inter-
preted in a biological-like molecular fashion is (and always will be) at the
meta-physical — not physical - level.

That said, what is also clear in a re-reading of The Selfish Gene is precisely
how accurate Blackmore (1999) was in stressing Professor Dawkins’ interpret-
ation of memes as being heavily dependent upon the concepts of an “element
of culture” and “imitation.” For example, Professor Dawkins highlights that
national dress is a good example of memetics in action — a classically obvious
imitative representation of an “element of culture.” But while this may be a
good starting point, we still feel this terminology is perhaps a little limiting
for our purposes. For starters, we ask can we better define the term “element
of culture”? After all, such a sweeping statement has the potential to include
themes, beliefs, strategies, religion, processes, laws (either social or those of
nature), rules of conduct, social mores, methods of practice — indeed “know-
ledge” in its most general form. Can we be more definitive — especially given
the finance-orientated motivation for our study? Is it possible to systematize
the actual classification of information into various forms so that the basic
universal (read “mathematical”) laws via which this information somehow
comes together to influence price activity can be better understood? What
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sequence of information bytes typically result in a substantial alteration in
price? How is this information agglomerated into memes and themes or even
market sentiment? To what extent is market related information economic-
ally produced and what is the motivation for this behavior? Answering these
questions would certainly help form the basis for a better understanding of
the universal laws that govern the evolution of what investors come to per-
ceive as “information” and through this, the evolution of market prices.®
From an alternate tact, can we better define the process of “imitation” so
that this too can be somehow formalized into our set of universal laws for
evolutionary information dynamics within financial markets?” An ambi-
tious charter we know, but one well worth pursuing given the earlier cited
centrality of information within the financial market mechanism.

To his credit, Professor Dawkins gave us some seminal insights here too
from which to build upon in our endeavors. For example, Professor Dawkins
highlighted that some general principles of successful memes were:

their “replication ability” — that is, how easily they are passed on?;
their “fidelity ability” - that is, how well they maintain their integrity
as they are passed on; and

e their “externality ability” (our term) — that is, how they reflect a spe-
cific microstructure that enables the binding of various segments of
information together so that the sum of a given information-set (and
importantly, the impact of the sum of the components of this information-
set) can at times be greater than its component parts.’

6 Assuming one has a basic understanding of genetics, it is obvious where we are head-
ing with such a hypothesis. What we are effectively searching for is the metaphysical
cousin to the C, A, G, T sequencing that makes up organic DNA. After all, depending
upon the sequencing, these four organic DNA nucleotides could just as easily determ-
ine eye color as they do skin tone. As Blackmore (1999) herself stated “Genes are
instructions for making proteins, stored in the cells of the body and passed on in
reproduction. Memes are instructions for carrying out behavior, stored in brains (or
other objects) and passed on via imitation.” What we are aiming to find out are the
universal laws as to how these memetic instructions are loaded and indeed, imparted
to other individuals.

7 Blackmore (1999) highlights that imitation is a genetic trait that all humans (and
indeed other higher species) carry. In fact, Dawkins (1976) highlighted the way memes
replicate from mind to mind is “like parasites infecting a host” — an analogy we will
draw upon in Chapter 5.

81t was via his focus on imitation as the basis for human learning that Professor
Dawkins was able to illustrate that mutation is high in memes - all one need do is
look at the outcome of a “postman” game among children to see this “mutation” in
action in a highly entertaining form. Indeed, Professor Dawkins believed that wrong
ideas in meme mutation eventually get “weeded out” - a potentially controversial
hypothesis to which we will return to a little later.

9 The first two attributes of successful memes are obvious in their comparative advant-
age for surviving the rigors of a natural selection type process. The last attribute is a
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Combined with a little algebra and some calculus this certainly provides a
nice foundation for attempting to mathematically formalize the universal
laws of information in financial markets. It is the last point in particular, that
potentially has merit for understanding the all-important information/price
dynamic - especially those in nonlinear form - since it attends to the principle
of information agglomeration. So it is toward the task of formalization that
we now turn but before we do, let us leave you with this wonderful quote
from Professor Dawkins as perhaps a fitting tribute to his seminal insights:

When we die there are two things we can leave behind us: genes and
memes. (Dawkins 1976, p. 199)

There is little doubt that Professor Dawkins memetic legacy will be long-
lasting.

4.2 Moving past the elementary: Taking the evolutionary
information concept further into the field of finance

By way of experiment, take a coin (any coin), two pieces of white sticky tape
and a black biro. Stick the two pieces of tape (which should be roughly the
same size) to either side of the coin and with the biro in hand, write a large “S”
on one-side and a large “B” on the other. Now flip the coin 100 times (1000
times if you are feeling up to it) and write down the results of each “S” and
“B” as they sequentially appear on the upward facing side. Next, examine the
number of “S” (for “sell”) and “B” (for “buy”) signals you have written down
and count the number of back-to-back sequences as they materialize — 1B, 18,
2Bs, 2Ss, 3Bs ... and so on. Plot the distribution function of this series and
what do you have? The ubiquitous Gaussian (Normal) distributional form.
This is IID at its simplest. The outcome of one coin toss has absolutely no
effect on the outcome of another coin toss — assuming that both pieces of
sticky tape weigh roughly the same amount. Add Fama’s fair-game principles
to establish a direct link between information and price and what you have
here is the bedrock foundation underlying the entire traditionalist finance
paradigm as to the way information and asset prices interrelate. Forget about
employing thousands of research analysts whose job it is to attempt to predict
the price movements in various assets — the market is way too informationally
“noisy” (read “random”) for these people to have any consistent success. In
fact, all you need is a primate with an opposing thumb (for flipping the coin)
and who possesses enough cognitive ability to mark a chalkboard and you

little more subtle in its “survivorship advantage” but when one thinks that a meme
(or information byte for that matter) with exceptionally high externality potential has
the ability to bind to a whole host of information, then it stands to reason that its
survivorship potential will be significantly enhanced.
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have the makings of a sound investment process for any would-be “research
department” at an investment bank or fund manager.

Surely the traditionalist cause must be more complex than this? The short
answer is no. While there have been many sophisticated appendages to tra-
ditionalist finance arguments, this should not obfuscate the core (somewhat
simplistic) beliefs that these traditionalists hold true as to the way inform-
ation and asset prices interrelate on a day-to-day, minute-to-minute basis.
This is not to say that the traditionalist finance math is not elegant or may
be useful for proving some esoteric point, but as any good mathematician will
testify, when it comes to the “real world” your outcomes are only as good as
your assumptions. Sure, if enough people believe in the traditionalist models
then ergo, the market’s movements will actually mimic such fundamentals -
indeed, we witness large swathes of such logic at work in the derivatives
market everyday.!® But likewise, there are equally important major segments
of the market where investor action is, at given points in time, belligerently
and consistently diametrically opposed to the traditionalist finance (random
movement) view. What we are essentially talking about here is the army of
active investors who intrinsically believe their insights can consistently out-
perform the Strong EMH/IID random model. As we highlighted in Chapter 3,
the fact that erstwhile “rational” investors willingly finance and encourage
such alpha-orientated research intimates a widespread belief by practitioners
within financial markets that the traditionalist notion of IID information
arrival is erroneous in the extreme.

So what are the alternatives? It is insufficient to criticize something of
such historical longevity as the traditionalist finance mindset without at
least attempting to proffer an alternative interpretation. Let us do this in
such a way that in effect challenges the much-loved traditionalist finance
notion of IID by attacking each of its component parts — and at every interval,
suggesting an alternate rationale.

Point of attack #1. Information is interdependent not independent. For
example, a particular US GDP release may not have its full market impact
upon asset prices until the arrival of associated information — such as the
release of US Current Account numbers. That is, there is a degree of latency
within each information byte that will only be unlocked with the arrival of
more information. As memes and themes gradually form in response to the
agglomeration of various information bytes, a definite dependence emerges
between asset prices at time f and asset prices at time ¢t + 1,t + 2... and
so on. This is in obvious contradiction to Strong EMH (and IID) principles.
Why? Informational latency highlights the potential for technical trading
rules premised on such intertemporal interdependencies to be consistently

10 Although perhaps the ubiquitous presence of volatility smiles illustrates a persistent
recalcitrance by derivative markets to fully conform with the traditionalist finance
utopian view at all moments in time.
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effective and as demonstrated in Chapter 2, the sustained profitability of
such rules constitutes an emphatic refutation of the Strong EMH principle.
Indeed, extending the informational interdependence concept even further
and considering the potential for the imperfect distribution of information
among investors, then it is possible to surmise that the realization of any
information latency may at times only be achieved via the actions of the
better informed investors influencing others. This is done primarily through
price signals. In short, the better informed investors’ actions will generate
a price movement that spurs other investors to investigate the veracity of a
particular theme. This, in turn, has the potential to unlock the full latency
potential ingrained in a whole array of information bytes. The net result?
Market prices moving substantively on days when there has been little in the
way of formal data releases. These are not the actions of “noise traders” but
rather the behavior of rational investors gradually coming to grips with the
realization of an emergent theme.

Point of attack #2. Consistent with the interdependence notion expressed
in point 1, the sequence of information arrival is important. A given US GDP
figure may have an entirely different latent market impact depending upon
the sequence of information that either follows it or precedes it. If for example
there is a crescendo-like rise then abrupt fall in the market’s belief in a partic-
ular emergent theme - thanks to a rapid sequence of strong ancillary support
information but then an emphatic dismissal of this emergent theme - then
it stands to reason that the pattern of pricing behavior would be signific-
antly different than had the ancillary support information been more evenly
spread over a broader breadth of time. Ergo, even though the net sum of
supportive information is the same in both cases, an investor’s interpret-
ation of events would be less impassioned in its backing of the particular
theme in question if the periodicity over which the supportive information
has arrived is relatively wide. Consequently, an intermittent sequence of
supporting information could have an entirely different influence in unlock-
ing the latency potential across a given array of information bytes than
had the same supportive information been condensed over a much shorter
time-span. Indeed, consistent with the following third point in our attack
upon IID, it will be established that the sequence of information has the
potential to alter the distributive consequences of a given information byte
upon the net sum of existing information simply because of the presence of
Complex nonlinear relationships between each information byte within any
given information-set.

Point of attack #3. Consistent with the sequencing notion highlighted in
our point of attack #2, we would argue that information is heterogeneously
(rather than identically) distributed depending upon its time of arrival and
underlying characteristics. As will be displayed in the ensuing pages, it is the
externality ability reflected in memes as given information bytes bind with
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each other that causes a nonlinear response function on behalf of investors.
Just as certain molecules have greater ability to bind to other molecules, so
too do certain information bytes have superior ability to agglomerate into
memes and thus reinforce a range of possible themes. Going back to our
earlier example of a strong US GDP result, this particular information byte
could just as easily be a contributor to a “weak $US theme” (thanks to concern
about a possible widening current account position) or a “strong $US theme”
(thanks to expectations of rising interest rates and asset prices). The differ-
ing interpretation depends upon the associative information that a strong
US GDP release has to bind with at a given point in time. This associative
information is reflected in memes (which are short sequences of information
bytes). As memes are formed, the latent information in existing information
bytes is effectively unlocked — at times in a nonlinear fashion, so that the sum
of the price impact of the information bytes represented within a particular
memetic string can at times be considerably greater than its component parts.
Subsequently, it is a combination of the arrival sequence of information and its
underlying “externality” characteristics that memes effectively unlock which
is ultimately the prime determinant of a given information byte’s distributive
characteristics both across time and across the entire information-set. Should
a particular information byte have a high “externality potential” and what's
more, this particular information byte arrives in an informational sequence
that is especially amenable to this externality potential being unlocked - it
forms a key component of a particularly strong meme — then not only will the
distributive characteristics of this information byte be different from others
within the information-set, but also across time the entire information-set’s
distributive form will itself alter thanks to the nonlinearity potential of new
(and latent) information being progressively unlocked in a more efficacious
manner thanks to the presence of this strong meme.!! Needless to say, this
too will be reflected in an altered pattern of price behavior and in particular,
prices will have a tendency to exhibit a distributive pattern significantly dif-
ferent to what would have been the case had the information byte’s format
been more consistent with the traditionalist finance assumption of IID. In
short, one should expect a greater recurrence of kurtotic/significantly skewed
distributional forms for both information and price under an interdependent
heterogeneously distributed information paradigm than would be expec-
ted had information itself conformed to the conditions espoused under the
traditionalist IID norm. Interestingly, this is precisely what we observe in
the real world - especially for price action over shorter, higher frequency
data horizons. So while heterogeneously distributed information may be a far
more difficult problem to wrestle with mathematically than its IID (Gaussian

111t is possible to look at this from “nature/nurture” type of perspective — “nature” is
the externality potential exhibited by a particular information byte while “nurture” is
the associative informational environment into which this information byte is thrust.
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distribution) forbear, it is nevertheless a far more interesting premise just
the same.

So how to formalize the earlier notions as to the characteristics of
information/price dynamics under our Evolutionary Finance paradigm? Here
is where we strike perhaps one our more enduring links with evolutionary
principles. Following in the footsteps of Farmer (2000) Table 4.1 illustrates the
analogous referencing one can use between existing biological/evolutionary
terms and our own corresponding Evolutionary Finance terminology.'? We
like to think of it as a “synonyms table.” As can be seen, themes are made up
of component memes which in turn are made up of information bytes. This
occurs in much the same fashion that DNA is made up of genes which in turn
are made up of the chemical bases (C, A, G, T). Themes drive market sentiment
which is then reflected in asset pricing and overall index performance. Like-
wise, a gene representation determines chromosome behavior which in turn
determines cell structure and the organism’s phenotype. In fact, we would go
as far as to argue that just as there is a genetic information genotype under-
lying each and every organism’s phenotype, there is an analogous financial
information genotype underlying each and every market price phenotype. It
is our objective to ascertain this sequenced genetic coding of financial inform-
ation — as information bytes come to comprise subgroup memes which in
turn, form larger theme strings. In short, what we are effectively searching
for is the “informational genome” of both individual asset prices and for the
market as a whole. We feel such an identification of the actual biological-
like component structure of the sequenced information underlying each and
every asset price phenotype is a powerful result that has many implications
for finance — not only from a theoretical modeling perspective but also from
an applied perspective as well. But to take our analogy further we need to
formalize our “informational genome” framework in much greater detail —
this is the charter of the following section.

4.3 The building blocks of our evolutionary approach toward
information in finance

How to encompass the aspects of Table 4.1 into a comprehensive model
of information evolution? At first we need to formalize the actual building
blocks of financial information itself — how bytes form memes, how memes

12 A key distinction in Table 4.1 is that between genotype and phenotype (see vertical
axis). In biology, the genotype is a complex set of genetic information (genes) encoded
in the DNA of an organism. The phenotype is the physical appearance of the organism
itself. The development of the phenotype as directed by genes is called morphogenesis.
In Evolutionary Finance, the phenotype of an asset is its price, its genotype is the
information content embodied in that price.
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Table 4.1 The definitional foundations of Evolutionary Finance vis-a-vis evolutionary

biology

Evolutionary Biology

Evolutionary Finance

Genotype
Level 1

Bases (C, A, G, T)
Four bases make up the double-stranded
molecule known as DNA
(deoxyribonucleic acid) that looks a
little like a spiral staircase. Each strand
of DNA is comprised of a
sugar-phosphate backbone and
numerous base chemicals attached in
pairs. These “bases” as they are known,
effectively make up the stairs of the
spiraling staircase and come in the form
of cytosine (C), adenine (A),
guanine (G) and thymine (T). The bases
act as letters of the genetic alphabet and
it is through their sequencing that
genes are formed. For example, around
3 billion bases arranged in sequence
form the approximately 35,000 genes
that comprise the human DNA
molecule. Within this molecule, all the
information required to “build” each
human being is stored.

Byte
The fundamental building blocks of all
information. Bytes are encoded into
sequences in accordance with the
information-set within which they
operate. For financial information,
bytes are encoded in the form of specific
action responses — Buy (B), Neutral (N)
and Sell (S). There is both a
contemporaneous (1st letter) and latent
(2nd letter) aspect to byte information.
So according to Evolutionary Finance
principles, a byte can take either one of
nine forms: BB, BN, BS, NB, NN, NS, SB,
SN, SS. For financial information a byte
can refer to an analyst’s research report,
a financial commentators story or even
an official release from a government
statistical bureau. Some bytes have
more “externality potential” than
others. That is, they have a superior
ability to bind information together.

Level 2

Gene
Comprised of base sequences, genes are
the functional units of heredity. Genes
store information which is then
converted into signals for building a
specific protein and thus cells —
governing everything from vital organ
tissue to hair color

Meme
Comprised of byte sequences, memes
are the functional units for the way
information is stored and relayed.
Memes unlock the latent information in
bytes. Just as particular letters of the
alphabet make up certain words, so too
do particular bytes form certain memes.
Some memes are stronger in their
impact than others but without every
necessary component of a memetic
sequence in place, the latent
information within constituent
information bytes will go untapped.

Level 3

DNA
First described by James Watson and
Francis Crick in 1953, DNA represents
the complete aggregation of an

Theme
An agglomeration of memes, a theme is
a broad reference given to a group of
memes (sometimes from a variety of

Continued
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Table 4.1 Continued

Evolutionary Biology

Evolutionary Finance

organism’s genetic information. It is
comprised of the entire gene sequence
which, in turn, represents the entire
base sequence.

assets). This classification of alternate
memetic information into associative
thematic groupings helps humans
encode information bytes (and their
larger form of agglomeration — memes)
for storage and retrieval within the
human brain. A new theme is
announced with the publication of a
particularly seminal information byte —
one with exceptionally strong
externality potential.

Level 4

Chromosome
Part of the cell that contains genetic
information. It is comprised of a tightly
packed coil of DNA — humans having 46
such tightly packed DNA coils in each
cell nucleus.

Sentiment (Bull/Bear)
An aggregation of themes that comprise
an overall interpretation of information
toward a given subject (in our case, the
market) at a given point in time.

Phenotype
Level 5

Cell
The basic structural and functional unit
of all organisms. The nucleus of a cell
contains all the genetic information.
Collections of cells form an organism'’s
tissues, blood and organs.

Asset prices
The object via which one’s
interpretation of all financial
information at a given point in time is
embodied. The most readily observable
response to changes in an investor’s
perception of the informational state is
alterations in asset prices.

Level 6

Organism
What we see as the “final product” of
genetic information. As the highest
level of aggregation of the encoded
information, it is also the most obvious
physical manifestation of the genetic
blueprint.

Index/market
An agglomeration of assets into specific
(meaningful) groups. When most
people refer to the “market” they are
usually referring to an index
(e.g., S&PS00) or a group of indices
(e.g., global bonds).

form themes and then in turn, how themes are reflected in overall market
sentiment. This conscious gradation toward ever increasing agglomerations
of sequenced information requires some form of mathematical framework if
it is to be organized into a meaningful schematic. It is the objective of this
section to develop such a mathematical structure. In doing so, we will present
our argument sequentially by moving through each successive information
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level (1-6) represented in Table 4.1.'* Readers will no doubt quickly surmise
that as we progress through each of these levels we are in fact sequentially
increasing the level of aggregation of sequenced information within the over-
all market informational set. We do this until we finally reach a position
where only a binary choice of classification is available — a bullish or bearish
perspective —which we classify as the prevailing “market sentiment.” We then
go on to identify how this information actually interacts with price - levels
5-6 in Table 4.1. This is done by examining how our derived informational
genome for the market is reflected in both individual asset price phenotypes
and for the overall price phenotype of the entire market itself. So now over
to the building blocks themselves.

Building block level 1: Information bytes

Following on from Table 4.1, let us assume information bytes (¢) are encoded
(for financial interpretation purposes) into one of three forms — “B” for buy,
“N” for neutral and “S” for sell. Further, let us assume that there is both a
contemporaneous and latent aspect to each information byte so that, in effect,
each information byte can take one of nine forms

(p) = {BB, BN, BS, NB, NN, NS, SB, SN, SS}, (4.1)

where the first letter constitutes the contemporaneous information signal and
the second letter the latent signal. A typical financial information genome
(3" ¢q) is thus comprised of a finite string of information bytes as reflective
on a particular asset (a) at time ¢

SS,NS,SN, BN, BB, BS,SN, SN, BB, BS,SB,SB, BN, BS,NN,NB,NN,
BB,SS,SB,NS,SB,SN,SS,SB,SN,NN,NB,BN,SB,SB,BB,BN,NB,
> ¢a = | NN,SN,BB,BB,BB,SB,SN, BN, BN,SB,SS,NS,SN,NN,NN,NN,
BS,BB,BN,BS,BB,BN,NB,SB,BB,BN,NN,NB,BN,BS,BB,SB,
NB,BN,SB,NN,NB,BN,BS,SB,BB, .................
(4.2)

where a subscript “I” rather than “a” denotes the informational genome for
the entire market — more on this later. Subsequently, the change in any asset’s
price reflects both the release of contemporaneous actionable information —
“buy” or “sell” signals — and the net sum of actionable latent information
enforceable at time t(A).

However, before moving on, some additional features of Equation (4.2) are
worth noting. For starters, a particular information byte’s form - the “buy,”

13 This is not to say that there need only to be six levels within our analogous mapping
of information in finance to an evolutionary biology referencing structure. Indeed,
if one wanted to drill down further, the actual “words” within analyst information
“byte” publications could effectively represent “atoms” and even the vowels that make
up such words could be described as “quarks.”
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“neutral” or “sell” signal - is directly dependent upon what asset it is related
to. It is entirely possible that a “BB” information byte signal for a given asset
in response to a certain “US GDP” release could just as easily be an “SS”
signal form for an alternate asset. For example, a bond asset’s information
byte form for a given economic release will typically differ from an equity
asset’s information byte form - given the underlying pricing characteristics
of these financial instruments. In other words, ¢, is asset specific — hence, the
subscript “a” in the notation.

Building block level 2: Memes

A meme is a subset of the information genome (}_ ¢,) and represents a spe-
cific finite sequence of information bytes. Any given information genome
for a given asset (a) is thus comprised of both memetic (M) and singular
(E) information

> 0a={M,E). (4.3)

What differentiates memetic from singular information is that the informa-
tional impact (II) of memetic information is greater as it binds to the other
information already contained within the information genome. Indeed,
memetic information bytes have the potential to bind to both contempor-
aneous and latent information alike and even have the potential to bind
to future information as it arrives as well. They do this via their externality
potential (x) — provided they arrive in the “correct” sequencing environment
for this externality potential to be utilized. Indeed, it is the combination of
these two forces which in effect brings previously dormant latent informa-
tion signals into the investor’s frame of reference.!* In short, correct memetic
sequencing and externality potential (x) enables “sleeper” latent informa-
tion to awaken and thus have a (potentially nonlinear) bearing upon asset
prices at any given time t.!5 As briefly mentioned earlier, it is the merger
of these two “nature” and “nurture” forces which act as the binding glue
to help form memes. “Nature” represents the externality potential (x) of cer-
tain information bytes contained within the information genome. “Nurture”

14In Chapter 5 we will embellish this concept considerably further as we measure the
IT of the net memetic externality weight for a given information set in terms of its
influence upon the price of a representative asset (i) and then distinguish between its
impact in contemporaneous (2) and latent (A) form.

15 Indeed, it is possible to regard the externality potential (x) of certain information
bytes as having an epigenetic-like effect in the sense that they may control meme
formation not necessarily immediately around them within the informational genome
sequence, but rather further along in the code. A certain information byte may result
in a “new way of thinking” about a given information sequence. This sequence may
come much later in the informational genome. This control from a remote part of
the information genome can be likened to epigenetic effects witnessed in biological
evolution. We will return to this analogy in the following section.
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is the sequenced informational environment into which these externality
potential bearing information bytes are thrust.'® Without the correct com-
bination of both events, memes will not form and all information within
the informational genome could be regarded as being singular — and thus
consistent with IID principles. Thankfully this is not the case and the inform-
ation genome can be regarded as being comprised of both singular and
memetic information.

As we mentioned earlier, since memetic information binds latent informa-
tion (and potentially future information as well) its II is larger than singular
(independent) information. Further, given the potential for memetic strings
to bind with each other via the externality potential (x) conduit - in essence,
small memes merge to form larger memes thanks to the arrival of a key piece
(a key information byte) of the memetic sequence - then there is the definite
potential for nonlinear IIs within our system.!” Consequently, assuming an
equal number (k) of memetic and singular information bytes within a given
information genome, the following is true

Iy [Z (pax:| > 11z [Z %x} , (4.4)
k k

where order matters so that ¢,1X, P2 X # Qa2X, Pa1X.

Building block level 3: Themes
A theme (j) is a subset of all memetic information (M)

jcM, (4.5)

where the number of themes in existence (I') for a given market informational
genome () ¢j) is always less than the total number of memes.'® Themes

16 Such sequencing alone has the potential to generate an impressive diversity of
memetic sequence permutations into which the “nature” element of an externality
potential bearing information byte can be thrust. For example, Mainzer (1997) illus-
trated in referring to the human genome sequence that even though genes in nature
are seldom more than 1000 sequential positions, if there are 4 symbols to each pos-
ition there are 4190 alternative gene permutations — or in scientific notation, 1009
possibilities. He states: “In order to get an impression how huge this number is, we
should recall that the content matter in the whole universe corresponds to 10%4 and
the age of the universe is less than 108 seconds.”

17 Such results are consistent with the earlier discussed Complex nonlinear dynamic
systems detailed in Chapter 3. Indeed, the arrival of a key information byte allowing an
intermittent group of small memes to suddenly become a large meme can be regarded
as a classic case of the “tipping point” in action. For a very readable exposition of this
phenomenon refer to Gladwell (2000).

18 Notice we use the subscript “I” to denote the market information genome rather
than the subscript “a” which applies to the information genome for individual assets.
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are formed on a classification basis as investors encode memetic inform-
ation bearing certain characteristics into various thematic groupings.'®
Subsequently, both the externality potential (x) and the correct memetic
sequencing of information will have a significant role to play in the forma-
tion of themes as well. This is simply because it is the combination of these
two factors that affect not just the formation of a meme but also (by-default)
the meme’s characteristics too.

A key attribute of thematic information is that it is generally comprised
of the memetic sequences from a variety of individual asset information gen-
omes. The appearance of a particular meme for a given asset may be generally
associative with the appearance of an alternate meme for a different asset. In
the investor’s mind both memetic strings are thus categorized into associative
information classes which we know as “themes.” As will be illustrated later
in this chapter, this is a fundamental attribute of the way the human brain
stores and retrieves information.

Given their information byte microfoundations, the arrival of new themes
(I') is coincident with the publication of a particularly path breaking
information byte that has exceptionally strong externality potential (x).
This information byte forms the kernel of an emergent theme as it binds
large sequences of memetic information together across a variety of dif-
ferent assets.?’ The appearance of these significant memetic strings then
have knock-on effects (via the investor’s categorization process) to theme
formation.

Building block level 4: Market sentiment
Market sentiment (H) is a subset of the number of themes in existence (")

HcCT, (4.6)

where market sentiment can take on either the binary “bullish” or “bearish”
form

H = {Bullish, Bearish}. (4.7)

19 Such memetic groupings are immediately analogous to what we observe in nature.
Watson (2004) describes the process where the presence of certain genes “switch on”
other genes until a certain “switching hierarchy” manifests where, left to its own
devices, the biological equivalent of a “brick wall” is produced from a “pile of bricks.”
The argument also works in reverse where a pre-existing knowledge of the associ-
ation between memes can assist in the search for the early stages of a particular theme
being built. We will put this knowledge to good work in our “early stage signaling” of
theme building in our applied analysis of Evolutionary Finance principles presented
in Chapter 7.

20 The implications that this “binding formation” of memes into larger entities (emer-
gent themes) has for asset prices is immediately analogous in the biological world to
the polygenic (multiple gene) effects that certain combinations of genes have for the
appearance of certain observed characteristics in human behavior.
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This binary outcome reflects the highest level of aggregation for financial
information. Again, it represents the outcome of the investor’s neurolo-
gical need to classify information, this time in relation to themes. The net
balance of themes as having a predisposition to either a “buy” or “sell”
orientation will determine the final “bullish” or “bearish” market sentiment
decision.

Building block level 5: Asset prices

Finally, let us discuss how information relates to price — in effect, the phen-
otype of the financial information genotype. At any time ¢, and assuming
(consistent with Fama's “fair-game” assertion) that the market price of a given
asset reflects the sum of all available information,?! then the price of any
given asset (a) can be expressed as the sum of all information bytes available
in the market as reflective on that particular asset (@) and scaled by a net
memetic externality potential weight (¢)

t
palt) = / oux(t) dt, 4.8)
0

where

¢, is the information byte as applicable to asset (a);
x the externality potential contained in each information byte; and
¢ is the net memetic externality potential weight.

This net memetic externality weight takes into account the sequencing of
information and the way it unlocks the externality potential (x) within each
information byte. It thus represents a convenient mechanism to reflect the
net sum of memetic II across a particular asset’s information genome (3" ¢,).

Building block level 6: The market index

Summating the entire information-set across all assets (4) within a given
market at time t and weighting each asset by the appropriate market
capitalization weight forms the market index (I)

A t
pit) = /O /O Ppax(t) dt, 4.9)

21 Note that in contrast to Fama’s “fair-game” model we have omitted the terminology
“expected” from market prices as we are not concerned just yet with the aspects of the
public versus private information dichotomy. Further, we also omit the terminology
“market relevant” from our informational assessment as we allow for the embodi-
ment of all information - even null (NN) information - into the information-set that
determines asset prices.
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where

I represents the market index of all asset prices in a given market;

¢ is information byte signal as applicable to each asset within the index;

¢ the net memetic externality potential weight;

x the externality potential contained within each information byte; and

A is the market capitalization weighted sum of all assets that constitute the
given market index 1.22

This in essence, represents the price manifestation of the market inform-
ational genome we mentioned earlier. Which, in turn, concludes our
discussion of the building blocks of an evolutionary approach toward inform-
ation in finance. In the next chapter we put these building blocks to work by
developing a comprehensive model of information production/consumption
in the financial arena and examining the asset price consequences of per-
petual information byte output by the analyst community. However, before
embarking upon this mission we should at first embellish our analysis by
examining some of the implications of adopting an evolutionary approach
toward information in financial markets. For starters, in the above we have
made with subtlety certain assumptions as to the way information neces-
sarily bolts together. Given our evolutionary context, these assumptions are
nontrivial and need to be elaborated upon further.

4.4 Some consequences of our evolutionary approach
toward modeling information

The gradualist versus punctuated equilibrium debate

As any student of evolutionary biology will only too readily testify, at present
there is a raging debate within this particular field of academic endeavor. The
“gradualist” versus “punctuated equilibrium” controversy has been a godsend
for many a popular science writer. We too have inadvertently stumbled into
this polemical area through our modeling of the actual building blocks of an
evolutionary approach toward information in finance. How precisely did we
manage this? Well, basically we have displayed a definite bias toward one of
these two competing viewpoints in the modeling we have presented in the
previous section.

By way of background, we provide a brief summary of both viewpoints
below.

e First, there is the “gradualist” perspective that evolution occurs in a
relatively smooth fashion with mostly (but not always) minor muta-
tions. These mutations at times confer some advantage within a given

22 Market capitalization is not the sole asset weighting procedure that could be used
here. GDP or even an equal weighted system could be used just as effectively in the
construction of the market index.



Mechanics of Modeling Information 91

environment and thus favorable mutations will be positively “screened
for” via the process of natural selection.

e Second, there is the “punctuated equilibrium” perspective that evolution
proceeds more spasmodically with large-scale mutations both in form and
across the breadth of species occurring over relatively short epochs fol-
lowed by periods of an elongated quiescence in evolutionary activity over
what are labeled as longer term “equilibrium” periods of time (hence, the
concise nomenclature “punctuated equilibrium”).?3

The gradualist camp has been most notably championed by none other
than the aforementioned Professor Richard Dawkins of Oxford University,
while the punctuated equilibrium school was up until recently championed
by the late Stephen Jay Gould of Harvard University.2* This debate — some-
times acrimonious — not only had the makings of an Ivy-league transatlantic
rift but also constituted a fundamental juxtaposition as to how life on
earth (as we presently know it) actually evolved. Indeed, the battle lines
between the “Dawkins versus Gould”/“gradualist versus punctuated equi-
librium” perspectives could even be drawn in terms of “reductionist versus
holistic thinking” - as briefly described in Chapter 3. It seems no stone has
been left unturned by this - as yet unresolved — debate.

For example, Morris (2001) argued that the gradualist school of thought
is fundamentally reductionist in their purview since they contend that indi-
vidual genes (as screened for by natural selection) will determine the traits
that make up an organism. Consequently, all one need do to “build” a given
organism is to identify the right set of genes that match a given set of traits.
To contrast, Morris (2001) argued that Gould and the “punctuated equilib-
rium” protagonists were more holistic in their perspective. This is primarily
because of their arguing that the presence of “spandrels” (a type of external-
ity in the genetic code as a result of the evolutionary process) results in the
need to also take into consideration the way that genes interact with each
other in the building of any organism - a type of “sum is greater than the
part’s” purview.?

23 According to Gould, such short bursts of intense evolutionary activity have a dur-
ation that can be measured in tens of thousands of years — perhaps 10,000 to 50,000
years — rather than millions of years. The rest of the time, natural selection actually
acts to keep speciation relatively stable. As will be argued a little later, this is a classic
Complex nonlinear mathematics result. Darwinists however, would favor a smooth
continuous form for a mathematical representation of the process of evolution.

24 Gould first published his theory of punctuated equilibrium in 1972 “Punctuated
Equilibrium: an Alternative to Phyletic Gradualism” under joint authorship with Niles
Eldredge. An elegant portrayal of this theory is available in Eldredge’s book Reinventing
Darwin (1995). For Dawkin’s perspective, see our earlier referenced The Selfish Gene
(1976).

25 For example, Winston (2003) raises the interesting evolutionary conundrum as
to why deleterious neurological disorders such as depression seem to have survived
the rigors of evolutionary screening. At a reductionist level, one would expect such
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From a mathematical standpoint, Gould’s approach should be seen to
be consistent with the presence of Complex nonlinearities in the order of
magnitude of mutations. Why? Simply because the earlier mentioned inter-
dependencies between genes (in particular, the functional form of these
interdependencies) provides a nice mathematical explanation for the per-
ceived intermittency in the “jumps” in the evolutionary process between
various equilibrium points. In short, the concept of “punctuated equilib-
rium” is entirely consistent with the Complex dynamics we presented in
Chapter 3. This is a point that has been expanded upon in considerable detail
by Kauffman (1993, 1995). Indeed, this Complex nonlinear outcome is in
fact augmented by the externality effect represented by the presence of span-
drels under Gould’s framework which, in effect, assists in mathematically
formalizing any nonlinearity.2¢

So just where do we fit into this debate? Given our sequence driven/
externality orientated building block structure for an evolutionary approach
toward information in finance (which, as we will display, has definite nonlin-
ear potential) we can be definitely categorized as being sympathetic to Gould's
“punctuated equilibrium” ideas.?” In particular, it is our formalization of the
“externality potential” (x) which we argue is displayed by certain inform-
ation bytes, which forces us toward this outcome. As explained earlier, it is

“imperfections” to be removed. However, if one adopts a holistic perspective of the
human mind then it may be that such negative emotions are a necessary by-product
of the overwhelming complexity of human thought. In other words, it is possible that
we have to make sacrifices in the form of some minor imperfections at the individual
component level for the “greater good” of the way that we as humans think. This
interdependency argument is consistent with the punctuated equilibrium purview of
a holistic approach toward the process of evolution. More will be presented on the
links between evolution and the human mind - and in particular, the human mind’s
information processing ability — later in this chapter.

26 Indeed, this externality driven Complexity analogy can be applied not just to the
evolution within a single organism but across a range of organisms as well. As Kauff-
man (1995) nicely summarized “Speciation and extinction seem very likely to reflect
the spontaneous dynamics of a community of species. The very struggle to survive, to
adapt to small and large changes ... may ultimately drive some species to extinction
while creating novel niches for others. Life, then, unrolls in an unending procession
of change, with small and large bursts of speciations, small and large bursts of extinc-
tions, ringing out the old, ringing in the new ..., these patterns ... are somehow set
organized, somehow collective emergent phenomena, somehow natural expressions
of the laws of complexity.”

27 But is there a hole in our analogous argument for likening information in finance
with information in the biological realm? After all, nonlinear jumps between two
evolutionary price equilibria sometimes entail a “revisiting” to a previous steady-state
price level. At first thought, one would not think there is an analogous “revisiting”
in evolutionary speciation in the biological world but interestingly there are just such
effects in some exceptional cases — see Whiting et al. (2003) “Loss and Recovery of
Wings in Stick Insects” Nature, 241, pp. 264-67.
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this crucial factor that enables information bytes to form memes when thrust
into a sequenced information environment conducive to meme formation.
The most obvious nonlinear observance of this information aggregation phe-
nomenon is the unlocking of previously dormant latent information so that
the II of memetic information is considerably greater than that of singular
information - on a byte for byte basis. Further, as also mentioned earlier, it
is important to recognize that it is not necessary for memes to form in dir-
ect proximity along the information genome to the particular information
byte possessing high externality potential (x). The “externality control” of a
given information byte can be exercised from relatively remote areas of the
informational genome if for instance the particular information byte in ques-
tion results in a new way of thinking about future information sequences.
This epigenetic-like effect is entirely consistent with Gould’s premise of span-
drels (which are argued to typically reside in non-genetic areas of the genome
sequence).?8 It is for this reason — in particular, the format of our assump-
tions — that we have inadvertently journeyed into an academic area well and
truly signposted “Here there be Dragons.”

The “rights” and "wrongs” of information evolution

The consequences of our evolutionary approach toward information in
finance do not stop with the gradualist versus punctuated equilibrium
debate. Loaded into the underlying assumptions of the analysis presented in
Section 4.3 are some fundamental precepts about the way information actu-
ally evolves through time. Take for example the implications of our approach
for the often-stated premise that investors always benefit from the provi-
sion of more information. Is this actually the case? Are there evolutionary
“dead-ends” to the spread of biological-like formed memetic information that
should be considered before making such assertions? Indeed, the existence
of speculative bubbles seem to intimate as much. Does our framework have
anything to say about the “rights” and “wrongs” of information evolution so
that the dispersion of erroneous information can possibly be circumvented?

Well for starters, as Blackmore (1999) acknowledged, one cannot categorize
the evolution of memes as having a predetermined conscious sense of “right
or wrong” — in fact, it is just as easy for bad ideas to spread as good ideas.?’

28 Indeed, to be sure, Watson (2004) has described such regions as evolution’s “wild
frontier” with mutations aplenty. It may be that similar epigenetic-like effects occur
in finance with seemingly innocuous information presented in the past suddenly
having a dramatic “meme enhancing” effect when coupled with the presence of recent
information.

29 This is true of the biological world as well. Winston (2002) provides a nice example
of suboptimal evolution — the human retina lies behind a layer of blood vessels and
nerves which generates a blind spot. This is an obvious design flaw of human evolution
that doesn’t appear in large cephalopods such as squid and octopus.
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Subsequently, there is little doubt that the system of equations presented
in Section 4.3 can be just as efficacious in explaining the contagion of
information that will ultimately prove deleterious to long-term investment
performance as it does to explaining the spread of more worthwhile invest-
ment philosophies. Sure, as Professor Dawkins argued, it is highly likely that
wrong memes will eventually get “weeded out” as part of the process of nat-
ural selection choosing only advantageous mutations — but all this involves
an element of time. Mistakes often get made in the short term and fur-
thermore as our discussion on Behavioral Finance in the previous chapter
demonstrated, it is important to remember that what actually constitutes a
“mistake” often not only involves a degree of judgment in terms of time but
also who ultimately are the winners and losers.

As we have witnessed all too regularly in financial markets, sometimes
certain investors are willing to “go along” with the belief structure of the
crowd knowing very well that such expectations are likely to prove to be
erroneous in the long term, but at the same time recognizing the poten-
tial for short-term gain in trend following behavior. Such is the “greater fool
you” theory of investing. This strategy is perfectly “rational” for those skillful
enough to pursue it successfully on a recurrent basis. Indeed, perceptions of
“rationality” and “irrationality” under such circumstances ultimately reside
on whether investors recognize the ephemeral nature of these momentum
strategies (i.e., there is a judgment of time involved). Also, while such
strategies may be “rational” and “right” for those adroit enough to get in and
get out of the trade at the correct points in time, they are equally “irrational”
and “wrong” for those who fail in this undertaking. That is, as identified
earlier, there is also a judgment of who are the winners and who are the
losers when it comes to classifying the “rights” and “wrongs” of information
evolution. It’s a simple case of the “winners are the grinners” under such
conditions and to these individuals such information is undoubtedly “right”
even though to the greater portion of the investment community (the losers)
such information will always be — with the benefit of hindsight - classified
as “wrong.”

How to ensure one is a winner rather than loser under such a market
environ? It is just as likely that a memetic sequence exists for signaling
the optimal time to pursue such a strategy as it does for the embarkation
upon what fundamentalists would argue to be more “sound” investment
approaches.®® In fact, trying not to be harsh, one could label momentum
strategies as being definitely “parasitic” in nature — at least from an evolu-
tionary perspective. These parasitic outcomes of rampant opportunism at
another’s expense are an endemic feature of evolution both in real and

30 The term “fundamentalist” in this context refers to those who advocate the use of
long-term valuation methodologies as the sole motive for investing.
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artificial ecosystems alike.3! Rather than being evolutionary “dead-ends”
such strategies should be seen to be one of the natural outcomes of the
evolutionary process. There is no “right” and “wrong” in such results. They
are simply a reflection of the optimal strategy for certain investors to pur-
sue given the present evolutionary stage of the information genome for the
market. Indeed, while the memetic genesis of each speculative bubble may
eventually get “weeded out” through time as the majority of investors learn
that the premise of their beliefs has proven to be ill-founded, the actual
parasitic response of the few who correctly diagnose the presence of a specu-
lative bubble and then (successfully) use momentum trading to exploit this
phenomenon is likely to be handed down from generation to generation.>?
In other words, rather than trying to regulate against such activity, one
should see such bouts of “irrational exuberance” as a natural outcome of
the evolutionary market process.

But this still hasn’t answered our question — how best to ensure one is on
the right side of this regularly reoccurring lucrative trade? The trick in devel-
oping such winning parasitic strategies is ascertaining the memetic string that
signals the optimal time to pursue momentum investing — but in turn, that
doesn’t rely upon the actual fundamental cause of the speculative bubble
itself as a trigger (as this will be constantly changing). Rather, for such a
strategy to be pursued successfully on a recurrent basis any devised memetic
string signaling device must rely upon the generic impact that the presence of
a speculative bubble has upon asset prices at large — a difficult but not insur-
mountable task. We will elaborate upon how to ascertain these all-important
memetic strings in much greater detail in our applied Evolutionary Finance
analysis presented in Chapter 7 of this book. Suffice to say now, we feel
that the ecology of the market in terms of speciation of possible investment
strategies will prove to be just as startling in its diversity under our Evolu-
tionary Finance banner as does the biological world constantly amaze in its
diversity under the principles of Darwinism.

So by way of summary, to be regularly successful in choosing the correct
strategy for a given asset over a chosen duration of time from the diverse
ecology of possibilities, one must have a firm grasp as to how information
evolves over time. There is no “right” or “wrong” in this process only win-
ners and losers. Winning evolutionary strategies are ultimately “right” while
those strategies that fail from an evolutionary perspective will become the

31 For example, Thomas Ray has been a pioneer in creating biological-like replication
within computer programs. An interesting outcome of his research was the emergence
of “parasitic” like code structures. Ray hypothesized that parasites were a natural
by-product of the evolutionary process. Indeed, it appears highly likely that para-
sitic investment strategies are a natural outcome of an evolutionary approach toward
information within the field of finance.

32 In this instance, a “generation” reflects the average periodicity between speculative
bubbles.
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aforementioned “dead-ends.” It's simply a case of the better adapted (at least
in terms of understanding the evolutionary drivers of market information)
outperforming the ill-adapted - as should be expected under the auspices of
natural selection. Unfortunately, up until now, a framework for describing
this process within the field of finance has been lacking. Subsequently, this
is one area where we feel our Evolutionary Finance approach can make a
huge contribution.

The stock and flow of knowledge

But what does the framework presented in Section 4.3 have to say about the
process of information production itself? Are there any implied assumptions
as to the “manufacture” of information buried within our analysis? Inter-
estingly there are evolutionary interpretations to be drawn here as well. For
starters, let us concentrate on the strategic behavior of information providers.
As will be elaborated upon in considerable detail in Chapter 5, strategic evol-
utionary behavior is rampant within the analyst community. Nowhere is this
more evident than in the pursuit of thematic based research. The choice of
topic for a particular information byte, its final recommendation, how this is
contributory or contrarian to the prevailing market consensus, are all crucial
strategic decisions undertaken by analysts on a day-to-day basis. Modeling
this within the context of the framework presented in Section 4.3 provides
the opportunity for the study of various evolutionary dynamic principles
such as predator/prey responses in topic selection, bull/bear positioning for
the differentiation of research product and responding to the opportunity
for contrarian swings in market sentiment.3?

But all this is grist for the mill for our modeling to be presented in Chapter 5.
What is important to recognize here and now is that a natural by-product of
our assumptions in Section 4.3 as to the continuous production of inform-
ation bytes is a tacit recognition that the information genome itself will be
continuously expanding across time. In other words, the stock of information
(and possibly knowledge itself) is ever rising. A rising stock of informa-
tion has the potential to result in an expanding knowledge base if one
assumes theme diversity expands “hand-in-glove” with the pace of informa-
tion. Why is theme diversity an integral part of a rising stock of knowledge?
Simply because if all information bytes were on the same topic, then overall
“knowledge” per se would not be increasing even though “information” is.

33 The possibility for predator/prey strategic responses on behalf of analysts within our
evolutionary framework should really come as no surprise. Lewin (1999) — in the spirit
of Thomas Ray’s earlier work - illustrated that predator/prey relationships not only
apply to the physical world but also in the artificial world created within computer
simulations of artificial life systems. Subsequently within the elaborate framework for
the evolutionary modeling of financial information presented in the previous section,
there are a plethora of avenues for pursuing the formalization of strategic inform-
ation provision by analysts — with predator/prey dynamics representing just one of
these outcomes.
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Thus it is important to form a link between information overall and the
subject matter of that information if we are to say something meaningful
in regard to the relationship between information and knowledge. Forging
a direct connection between theme diversity and “knowledge” in its most
general form is thus a convenient way to do this. Subsequently, as the fol-
lowing shaded section illustrates, should analysts decide to embark upon a
career of information byte production — which we assume they do, using stra-
tegic evolutionary behavior to guide them in their choice of topic for each
information byte — then the stock of information (and possibly “knowledge”
in its most general form) will be on a perpetually upward trajectory — that is,
provided theme diversity too is rising commensurately.>*

The ever-expanding stock of information (knowledge)

For simplicity, let us assume analysts produce all information and there is a one-to-
one link between information byte production and theme diversity (an assumption
we will later drop in Chapter 5).

Ergo, we assume analysts produce both information and knowledge (K) in a
manner consistent with strategic evolutionary principles at a rate . The amount
of information (knowledge) in the world is thus governed by the equation

K =K. (4.10)
Separating variables gives

‘%K = pdt. (4.11)

Integrating both sides gives
InK =nt +¢, (4.12)

where “c” is a constant of integration. Assuming (rightly or wrongly) that we are not
alone in the universe and some omnipotent “being” had at least some information
(knowledge) before the genesis of the analyst community, then the amount of
information (knowledge) at time t = O is a non-zero integer represented by Kp.
Thus the final solution to the growth of information (knowledge) under this rather
simplistic interpretation of our Evolutionary Finance principles is

K = Koe™. (4.13)

This can be represented in graphical form as shown in Figure 4.1.

34 For the stock of knowledge to actually fall, we would need to introduce some form
of entropy within our modeling process. While this is not explicitly undertaken, it is
cited as a worthwhile avenue for future research. For example, Shannon and Weaver
(1963) demonstrated that the more new information entering a system, the faster the
rate of decay (entropy) of the existing information-set.
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Figure 4.1 The ever-expanding stock of knowledge

In Chapter 5 we will expand this concept considerably by removing the assumption
of a one-to-one link between information byte production and expanding theme
diversity. In particular, we introduce a model where analysts are perpetually eco-
nomically rewarded for introducing new ideas and concepts through the pursuit of
thematic based research (i.e., the production of information bytes in a thematically
purposeful way) where there are direct incentives to expand theme diversity. We
then allow for the potential for variations in the rate of information production
and the rate of theme diversity production () by formalizing various scenarios for
strategic evolutionary behavior on behalf of the analyst community in terms of
the choice of topic for their information bytes — which in some cases results in the
emergence of a new theme. Subsequently, we are able to formalize alterations to
the rate of knowledge accumulation (K) simply because knowledge itself is related
to this time-variant pattern in theme diversity. In particular, switching between
new and old themes in their (continuous) information byte production results in
wave-like patterns emerging in the upward trajectory of (K). Subsequently, we are
able to formalize into one interconnected framework a whole host of interesting
behavioral outcomes ranging from strategic analyst behavior, to market (and there-
fore price) responses to theme variation, to alterations in both the structure and
fabric of knowledge itself. This is but the tip of the proverbial iceberg when it comes
to reaping some of the benefits of our evolutionary approach toward information
in the financial sphere.

But can we state more about the flow of information without recourse to
the sophisticated model we present in Chapter 5? Sure, as we have stated
earlier, in Chapter 5 we will present various scenarios for strategic evolu-
tionary behavior on behalf of analysts altering the flow in the provision of
thematic information (and therefore “knowledge” itself) — but so far this is
just an analysis (albeit in-depth) of the supply response. Can we state any-
thing about the demand response? In particular, are there any “demand-pull”
principles regarding the investor take-up of the ever-rising tide of analyst
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provided information that we can elaborate upon at this introductory stage
of our analysis? The good news is that there is a considerable body of lit-
erature dealing with this very premise. What we are referring to here is the
ubiquitous “S-shaped” diffusion pattern for information dispersal — a model
that is often cited as the “base-case” scenario for illustrating the take-up of
new information.

Diffusion is an often-encountered principle in metaphysical and physical
phenomena that appears across a spectrum of intellectual thought — ranging
from physics to chemistry to engineering to economics and finance. The
concept of information diffusion (as embodied in the form of a new tech-
nology) was first introduced by Ryan and Gross (1943) but then popularized
within the field of economics and finance by Zvi Grilliches (1957, 1960). Each
of these studies considered the take-up of new hybrid corn varieties across the
US mid-West. That said, the principle of diffusion itself has now been exten-
ded to a plethora of information dispersal examples including (among other
things) consumer acceptance of new generation mobile phones, to internet
usage, even to the adoption of rap music by white Americans.?

Depending upon specification, the pace of diffusion can be either fast or
slow but the generalized pattern remains the same - an elongated S-shape
for the cumulative take-up of the observed “diffusive” variable across time.
Why is this the case? In short, two characteristics typify a diffusion model -
a finite population and a (constrained) exponential growth function. The
“diffusion” variable typically represents the relative proportion of the finite
population who has taken onboard the new information at a rate dictated
by the (constrained) exponential growth function. By observing the order of
magnitude of the second derivative of the particular diffusive variable with
respect to time it is possible to see the drivers of the characteristic S-shape
pattern that emerges.

But this still doesn’t shed any light on why an S-shaped pattern should
appear in preference to other well-documented graphical representations of
dynamic forms? Well, at the early stages of diffusion, the finite population
does not provide a major constraint upon the exponential-like take-up of
the diffusive variable — whether this represents the use of new hybrid corn
varieties within a geographic locale, the appeal of rap music to a particu-
lar audience, or the conversion of a proportion of the analyst community
believing in a particular investment theme. So for a short period of time,
the initial stages of the diffusion pattern resemble more the ever-increasing
function presented in Figure 4.1. Gradually however, the finite population
begins to reach saturation point and the pace of diffusion begins to slow. As
stated earlier, in mathematical jargon this implies that the second derivative

35 See Rodgers (1995) for an extensive discussion of the diffusion model and a colorful
array of examples of the take-up of new products (which, in effect represent a classic
embodiment of new “information”).
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flips from positive to negative as the finite population constraint is neared.
It is this combination of events that gives the evolutionary time path of the
diffusive variable its characteristic “S-shaped” pattern as in the simplest of
terms, the upward spike represented in Figure 4.1 is repelled as it approaches
the finite population ceiling and thus the function gradually “bends” back
down toward flat.

Adding to our conviction for this particular format for new theme dispersal
is an analogous body of research that is generally supportive of the S-shaped
diffusion pattern as representative for the “demand-pull” by the analyst com-
munity for new investment themes. What we are referring to here is the
considerable amount of literature that has been put forward within the field
of finance on the presence of “information cascades.”¢ Here, the “cascade”
is effectively started by one “new theme believer” analyst talking to another
(and thereby converting) two more analysts (total converts = 3), who then
each impart this information to two more analysts (total converts = 7), then
these four “newly converted” analysts each talk to another two analysts (total
converts = 15) ... and so on.?” The path of the stylized information cascade
is represented in Figure 4.2. In short, it represents a classic example of a
geometric progression, but what can be readily seen from Figure 4.2 is that

Information cascade Information diffusion
Stage 1:#1

Total converts
Stage 2: #3 —
Analyst interaction
converting the finite
population of analysts
(25) into “New theme
Stage 4:#15| believers”

Stage 3: #7.

Stage 5: #21

Stage 6: #25

Stage1:#1  Stage3: #7 Stage 5: #21 Time
Stage 2: #3 Stage 4: #15 Stage 6: #25

Figure 4.2 An information cascade for new theme contagion between analysts

36 Sometimes such information cascades result in the presence of our earlier mentioned
Complex nonlinearities. The link between Complexity Theory and information cas-
cades (sometimes known as “information avalanches”) is nicely summarized by Bak
(1997); “Complex behavior in nature reflects the tendency to evolve in a poised crit-
ical state, way out of balance, where minor disturbances my lead to events, called
avalanches, of all sizes. ... The evolution to this delicate state occurs without design
from any outside agent. The state is established solely because of the dynamical inter-
actions among individual elements of the system: the critical state is self-organized.”
For an exposition of a relatively simple model of an information cascade, see Banerjee
(1992, 1993).

37 The geometric scalar chosen here is by way of example only. Obviously the higher
the scalar, the faster the pace of diffusion (and vice versa).
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pretty soon it becomes difficult to find an analyst who actually isn’t “in” on
the story. This is where the finite population of analysts begins to limit the
pace of contagion of the new theme and therefore the information diffusion
pattern acquires its characteristic S-shape.

In the box below, we illustrate the formalization of such an information
cascade/information diffusion pattern — but interestingly, it is not instigated
by analyst “agents” who do the diffusing. Rather, we use the attributes of
information itself — in particular, the strength of externality potential (x)
that a particular information byte possesses — to act as the diffusive control
variable. Why? In short, it is the strength of externality potential (x) that
acts as the coagulating force in meme formation that is related to a particular
theme (j). It is therefore this innate characteristic of information itself that
in essence can act as a driving force in the contagion of any given theme
(j). Basically, externality potential (x) is a formal embodiment of the more
a given theme gets “talked about” and “related” to other events (in terms
of formation of associative memes) it therefore governs the rate of a theme’s
uptake within the investment community.3® However, as a particular theme’s
dominancy begins to grow, it starts to approach the saturation point for the
collective investment community’s mindset. When this occurs, the pace of
diffusion begins to slow.> It is here that our externality potential driven
(memetic-based) diffusion process acquires its characteristic “S-shape” — as
will be illustrated by the following.

The diffusion of memetic information*°

Let us assume that a new theme () is “announced” via the publication of a seminal
information byte that has exceptionally strong externality potential (x). Further,
let us assume there is a fixed population of investors (Z) with the proportion of
investors believing in this new theme being represented by (®).

The stronger the externality potential (x) the greater the pace of meme
formation — especially when this particular information byte is thrust into a
sequenced information environment conducive to meme formation. Assuming a
simple linear relationship between meme formation related to theme (j) and the
take-up of this theme by the fixed population of investors (Z), then the following

38 Notice here that we made the switch between “investment community” and “analyst
community.” As will be displayed in the Chapter 5, this switch is inconsequential for
our purposes as we assume that the total number of analysts equates to the total number
of investors. Needless to say, this does not always have to be the case but for modeling
purposes it does help reduce the complexity of our system of equations.

39 We will build upon the concept of theme dominancy (and the consequences this
has for strategic evolutionary behavior on behalf of analysts) considerably in the next
chapter.

40For a comprehensive overview of the mathematics underlying diffusion-based
methods, see Crank (1975).
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Figure 4.3 The memetic-based diffusion of a given theme

logistic equation represents the time dependent evolution of the share of investors
believing in this particular theme at a given point in time*!

. ®
O=x0(1-—=). 4.14
x ( Z) (4.14)

Separation of variables and integration gives the solution to the above
equation as

9 (0)eXt
Q) — %. (4.15)
Z+0(0) (et —1)
The evolution of (®) can thus be represented graphically as shown in Figure 4.3.
Subsequently, we have formalized is the ubiquitous “S-shaped” diffusion pat-
tern for information dispersal into a simple model where the characteristics of
information itself — in particular, the externality potential (x) embodied within
each information byte — governs the pace of the memetic-driven uptake of a given
theme (j). This is a powerful result that we will revisit upon in many occasions in
the ensuing pages as we further embellish our Evolutionary Finance principles.

As stated earlier, we will elaborate upon this particular pattern of theme
dispersal (along with its implications for asset prices) in much greater
detail in the calibrations for our comprehensive evolutionary model of the

41 We assume here for convenience that each meme is effectively the same size and
meme formation — as governed by externality potential (x) — is a smooth continuous
function. Should we assume a more “lumpy” pace of meme formation then Figure 4.3
would still basically resemble the characteristic “S-shaped” diffusion pattern in terms
of its trend path but the pace of investor take-up would be decidedly less smooth so
that the diagrammatical representation would be less smooth also.
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marketplace to be presented in Chapter 5. That said, we hope we have
provided at least the preliminaries of some of the forces governing both
the stock and flow of information (knowledge) within our comprehensive
Evolutionary Finance approach toward the study of the actual microstruc-
ture of information in the financial world. Further, we hope we have provided
some insight as to the implications of the assumptions we have made in our
formalization of this informational microstructure in Section 4.3. As stated
at the outset, these assumptions were nontrivial and we hope we have dis-
played as much in the preceding pages. But before we further elaborate upon
our comprehensive evolutionary model of the marketplace itself, we must at
first understand how investors actually interpret information that is the res-
ult of our analogous evolutionary/biological-like building block process. Do
investors actually “think” in a manner that is supportive of our revolutionary
viewpoint? As will be seen, the framework we have presented so far is sur-
prisingly sympathetic to neurological studies as to the way humans actually
process information. This is good news for us but definitely bad news for the
Strong EMH/traditionalist finance paradigm that'’s for sure.

4.5 How investors interpret Evolutionary Information

One of the serendipitous beauties of our evolutionary approach toward
information in finance is that not only is it analogous to the way researchers
have described evolution in the biological world, but it is also analogous to
the way neuroscientists have described the human thought process. We as
humans approach information in a systematic way. We break information
down into its component parts, we sift for what information is relevant and
what information can be discarded, we look for associations between various
stratum of information both for interpretation and for forming inter-linkages
so that the retrieval of this information is easier at a later date. As will be
displayed, these key attributes are inexorably consistent with the structured
approach toward information under our Evolutionary Finance framework.
Investors look to build themes from memes, and memes from bytes. They
can’t help but think this way because their entire information interpreta-
tion experience is founded on the premises of categorization and associ-
ation. “Bytes”/“memes”/“themes” are merely a convenient nomenclature
for describing this human thought process within a context that is readily
understandable within the financial arena. Indeed, the consistency between
our approach and the neuroscience approach is so stark that it seems almost
unbelievable that a detailed study of the actual microfoundation building
block structure of information within finance has not been undertaken until
the publication of this book. Certainly we as humans do not treat informa-
tion as though it is the outcome of some random number generator, so why
should we overlook the wealth of evidence from the neuroscience area point-
ing to a systematized piece-by-piece structured approach toward information
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processing by the human mind in favor of the random-based IID principles
that are assumed to apply under the Strong EMH/traditionalist framework?

To illustrate our point, we will at first provide a cursory examination of
investor perception - detailing the strong consistency between the neuros-
cience perspective of the human mind’s information processing regimen and
our own Evolutionary Finance perspective. We then go on to extend our
analysis by exploring in greater detail the nature versus nurture debate as
to the way humans systematically approach information. In particular, we
highlight that while great strides have been made in the field of Behavioral
Finance to better understand the “humanity” of the investor’s thought pro-
cess, this approach can still be criticized for being too “nurture” orientated
in its foundations. Finally, we examine the ultimate human limits of inform-
ation absorption itself and how this can at times act as a constraint on the
optimal outcome for meme and theme formation.

The fundamentals of investor perception — similarities between our
Evolutionary Finance purview and the neuroscientist’s perspective on
information processing

Let us start by stating right from the outset that there is no way we can even
attempt to cover the complex area of human perception in the short space
allotted here. Rather, what we will attempt to do is to outline a series of points
that we feel are crucial in detailing how our structured approach toward
information under our Evolutionary Finance banner is strikingly consistent
with neuroscientists view as to how human’s “make up their minds.”

Point of consistency #1. Information encoding — the first thing that happens
when we “perceive” information is that we encode it. Is what we have just
experienced a sight, a sound, a sense of smell, a taste or a touch? In much
the same fashion as we have encoded information into a series of actionable
signals — “buy” (B), “neutral” (N) or “sell” (S) - under our Evolutionary Fin-
ance framework, so too does the human brain find it necessary to encode
raw information into meaningful entities.*? Indeed, assisting us greatly in
this process is the obvious structure provided by language. In precisely the
same way that bytes make up memes, and memes make up themes, phon-
emes (various combinations of sounds) make up words which in turn forms
syntax. In effect, words give our experiences structure and meaning and thus
help us to encode information.** Writing too plays an important role as it
forms a record of such encoding and thus assists in the process of learn-
ing. To quote Winston (2003) “Language, like making and using a tool,

42 For a detailed discussion of the mechanics of this process, refer to McClelland and
Rogers (2003).

43 For a discussion of the evolutionary linkage between human development and
speech, see Aitchison (2000).
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is a sequence.”** It is thus this sequencing of encoded information that
provides a key foundation stone for both the processing of information in
the human mind and the formalization of the informational microstructure
under our Evolutionary Finance approach. Ergo, it is little wonder that we
should put this point of consistency at the top of our list for the symbi-
otic nature between the neuroscience perspective and our own structured
approach toward information interpretation in the finance world.

Point of consistency #2. Information categorization - immediately after
encoding information we categorize it. In short, the human brain breaks new
information down into manageable interpretable “bits” before categorizing
these various “bits” of information by their associations. This act of asso-
ciation is important for the storage and retrieval of information at a latter
date.®> For example, looking at a particular person may provide information
as to gender, age, hair color, apparel, height, weight, even clues to where
they have been recently (have they been swimming for instance) and where
they have been in the past (e.g., they could be wearing a school ring). We use
a variety of perceptions to make these judgments - sight, smell, sound and
so on. The piece-by-piece subcomponent categorization and interpretation
of information is entirely consistent with the “byte to meme” and “meme
to theme” building block structure we have presented in Section 4.3. This is
simply because the structure we have developed is based upon the process of
association too. In the earlier example, the person in question may be associ-
ated with other individuals in our minds simply because they have red hair.
The same process of association occurs when we categorize various memes
into different themes — a cyclical recovery story, a long-term demographic
story, an exchange rate volatility story and the like. Indeed, a well-known
example of such categorization at work is the so-called “P300 response”. This
occurs when volunteers are given a list of words with strong associations but
also one exception. Invariably, when the readers strike the exception there
is a lagged 300 millisecond surge in EEG measurement as the reader pro-
cesses the new information and the brain must work harder to “look for”
where to categorize this associative information “outlier.” Sorting a group

44 Winston (2003) The Human Mind: And How to Make the Most of It, p. 191.

45 The categorization of information into separate bundles is handled by separate
areas of the brain. For example, Winston (2003) highlights that as information travels
through the brain it is split into various streams — some information may go to the
visual cortex, some to the limbic system for tagging in terms of memory and emotion.
Within each of these regions information is split down further still before being mar-
ried to corresponding associations. Within this process, the anterior cingualate gyrus
(ACQG) plays a key role by acting as a filter for incoming information - prioritizing some
information while discarding other information that is not needed. This is a necessary
evil to prevent information overload, otherwise we would not be able to drive down
a busy street without running the risk of a serious accident simply because we are
overwhelmed by the information onslaught.
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of memes into themes requires precisely the same neural structure. In fact,
we are neurologically “hard wired” to categorize. During the first stages of
life we produce new neurons at the staggering rate of 250,000 per minute.
Initially these neurons connect with each other in a seemingly random fash-
ion but during our early infant years apoptosis takes hold and neurons are
selectively culled.*® It is only the neurons that have built up the strongest
associations that survive — this is done by being repetitively called upon to
categorize information “bits” in accordance with their associative similar-
ities. Very seldom do we associate cheese with a pen so it is unlikely that
such a neuron connection would survive. This process of apoptosis is some-
times referred to as “Neural Darwinism.” Without doubt, we call upon this
“associative hard wiring” in our interpretations of financial information in
precisely the same fashion that we use this associative neuron network to
interpret other forms of information. What we have done in the microstruc-
ture building block framework that we have presented in Section 4.3 is to
give this associative behavior a formal mathematical reasoning using a ter-
minology familiar to most of us in the finance profession so that we can
better investigate the implications of the human mind’s categorization and
association process across a variety of observed financial phenomena.

Point of consistency #3. Information latency, memory and the externality
potential — hand-in-glove with the process of information categorization and
association goes the unconscious act of information storage. Interestingly,
there are parallels to be drawn here as well between the neuroscience perspect-
ive of information processing and our own Evolutionary Finance purview.
In particular, we refer to the presence of information latency. Quite often
a major crime case is not solved until one crucial piece of the puzzle falls
into place and the full associative network of information becomes appar-
ent. Our mind uses precisely the same information latency effect in drawing
its own interpretations — indeed, a major constituent of creative thought
relies on this very premise (the “eureka” effect). Creative genius often relies
upon a sequence of subconscious associations until some trigger — quite
often a mistake — awakens this network of sleeper latent information and
the full beauty of the interconnected information-set can be appreciated in
its entirety. This fundamental aspect of the way we as humans “think” is

46 By way of background, each neuron in the brain is connected to up to 10,000 other
neurons by tendril like roots. These trendrils come in two forms — dendrites and axons.
Dendrites receive information, axons send information. The information is “sent” via
the release of chemicals from the neuron. Mainzer (1997) highlights that there are

1010" associative neuron interconnections within our neural subsystem. This repres-
ents a huge amount of processing power for encoding, categorizing and processing
information. Neural network algorithms represent but a limited approximation of this
information processing power. These computer algorithms will be discussed in greater
detail in Chapter 7 in our applied perspective on Evolutionary Finance.
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exactly the reason why we have explicitly formalized a latency structure into
our microfoundation building block framework for information outlined in
Section 4.3. But the parallels do not stop here. Generally the stronger the
emotion associated with a memory (in effect, a latent “bit” of information)
the better its recall.#” Most people can tell you precisely where they were
when they learned of the shocking events of 9/11. In memory, this emotive
linkage is called long term potentiation (LTP). This “emotional scalar” attach-
ment to our memories is entirely synonymous with the concept of externality
potential (x) being an integral feature of each and every information byte.
Obviously, it will be a combination of latency and strong externality potential
(x) that helps form strong memes but this occurs in precisely the same fash-
ion that a combination of latency and strong emotional attachment helps
form strong memories. The similarities are striking. In short, in both cases
it is a combination of the two factors — externality potential (x) for Evolu-
tionary Finance, emotion for neuroscience — with a form of informational
latency that is crucial in forming the all-important associative jig-saw puzzle
that helps us to interpret our informational environment.*

Point of consistency #4. Learning and meme selection — synonymous with
the above, strong memories and strong memes must at times withstand the
process of selection. In neuroscience this is labeled as “learning.” Getting to
match the right associations between new and old information is effectively
how we “learn.” This selection process is entirely consistent with the way we
select memes — we gradually learn the correct associations. As stated earlier,
there are no philosophical “rights” or “wrongs” in this process, just correct
and incorrect interpretations of the given state of the informational environ-
ment. That said, sometimes this process of deducing the “correct” memes for
a given point in time over the inevitable evolution of the market’s inform-
ational genome can be expedited. As we stated earlier, Professor Dawkins
(1976) made considerable headway in stressing the importance of imitation
as a mechanism for meme selection. Neuroscience too highlights the import-
ance of imitation as a mechanism for expediting learning.*’ Indeed, Winston
(2003) illustrates that just as humans are neurologically “hard wired” to
categorize, they are also “hard wired” to imitate each other — some neur-
ons within the brain only fire in response to the actions of other humans.
This is especially important in learning difficult concepts such as language
and the appropriate responses to universal facial gestures such as smiling

47 In terms of neural structure, the amygdala plays a key role here as it “tags” incoming
information with an emotional value.

48 Consistent with the above, memory can be enhanced by “training” the mind
for association. For example, the “Method of Loci” uses a stylized journey to assist
individuals in recalling a string of facts.

49 Attenborough (1980) highlights that complex imitation as means of learning
distinguishes higher order — human-like — apes from their lower order brethren.
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and frowning. But imitation is not the only way we learn. The earlier cited
“eureka” effect intimates how creativity (via association) at times relies upon
surpassing (and even circumventing) the rote process of imitation.>® It is
interesting that both imitation and creativity form an integral part of the
strategic analyst behavior cited in our model in Chapter 5. Just as these pro-
cesses are essential to the way we learn to interpret each other’s behavior,
they are also crucial to the way we select and develop superior investment
strategies. What we have done in the evolutionary building block informa-
tion framework we have presented in Section 4.3 is to put forward a formal
mathematical representation which allows us to better understand this fun-
damental human (and therefore investor) action. In fact, in our applied
analysis presented in Chapter 7 of this book, we take this process even further
by developing a framework that predicts how other market participants will
actually “learn” a new investment strategy. This effectively keeps our readers
one step ahead of the pack in developing evolutionary strategies that take
into account the learning/imitative behavior of others.

Point of consistency #5. Shaping our informational world - finally we come
to the institutional setting that we create to assist us in our information
processing role. Just as there are countless examples of classification nomen-
clature that assist us in categorizing general information - the chapters of a
book for instance, the demarcations of isles in a supermarket, the sorting of
magazines at a newsstand — so too we have created a classification nomen-
clature in finance. Micro/macro, growth/value, technical/fundamental are
all labels which assist us in classifying the research output by analysts.>! But
the classification does not stop here. Interestingly, such categorizations can
also be reflected in floor layout within fund managers or investment banks.
Many of us have walked onto a large trading floor and have been initially
bewildered by the seemingly overwhelming amount of information presen-
ted to our senses. At closer inspection this “informational noise” begins to
form a structure as we witness various clues to assist us in our categorization
efforts. Small national flags on trading desks illustrate the geographic prox-
imity of where the desk “trades,” what news services are up on the traders
screens, even the size of their wristwatches (fixed income traders generally
favor big chunky sports chronographs) all provide us with insights to help

50 For example, Peters (1996) highlighted that early Artificial Intelligence algorithms
were consistently beaten by Grand Masters as they failed to possess the human charac-
teristic to associate. Rather, they sought to go through every possible permutation of
response by referencing identical games in history rather than their human counter-
parts who were able to refer to similar (but not exact) historical precedents and devise
new, superior strategies.

S As stated earlier, typical artificial models of the market break the “market” into
different trading groups. For example, Rodriguez et al. (2002) break the market into two
warring factions of “fundamentalists” and “chartists” in their artificial market model
of deterministic Chaos. This in effect, represents an informational (and subsequent
institutional) classification typically undertaken within the market.
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sort and classify what is initially an amorphous mass of information.*?> Once
this is done the information becomes much more manageable and indeed
we start to build up a schematic representation of a fully categorized trading
floor within our heads. “FX guys to the left, derivative guys straight ahead,
CBOT traders to the right within this group” and so on. We cannot help
but think in this way just as we cannot avoid building an elaborate financial
institutional structure that by its very labeling is assistive for us in our efforts
to categorize information. It is simply a function of the way our brains are
structured. We will dwell upon the relationship between institutional struc-
ture and its information servicing role in much greater detail in Chapter 8.
Suffice to say here, the metaphysical building block structure that we have
provided in Section 4.3 for an evolutionary approach toward information in
finance is entirely consistent with the evidence we observe in the physical
world - both within the finance industry and beyond - simply because it
too is nomenclature based. The labeling of various stratum of information
into component bytes, memes, themes and even overall market sentiment
has been quite purposeful. All these terms are already in common usage. All
have been used at various times to describe that amorphous mass of what
we perceive as financial “information.” What we have done in Section 4.3
is to give this information a structure so that we can better understand it —
in precisely the same fashion that the trading floor problem was effectively
“sorted” in our minds in the earlier example. In this respect the nomenclature
we have chosen, and indeed the act of choosing nomenclature itself, is con-
sistent with neuroscience observations as to the way we as humans think.
Yet again our Evolutionary Finance perspective and the neuroscientists per-
spective provides a nice marriage of convenience in better describing (and
understanding) our informational world.

The nature versus nurture debate on information processing — moving
beyond the Behavioral Finance purview

Without doubt, a number of the earlier points illustrate that it is ultimately a
combination of both nature and nurture that determines how we as investors
“think”, for example, it is both neurological “hard wiring” and our actual
experiences that help us to form the all-important associations for categoriz-
ing and retrieving information.>® With respect to this “humaness” embodied

52 As stated in Chapter 3, it is interesting to observe the Complex nonlinearities that
emerge when modeling the interactions between such groups. At times even relatively
unsophisticated creatures can display surprisingly intelligent behavior when drawing
upon the processing power of the collective group — see for instance, Swarm Intelligence:
From Natural to Artificial Systems by Bonabeau et al. (1999).

53 Interestingly, it was Francis Galton who first coined the terms “nature” and “nurture”
to describe the different forces in shaping human behavior in his treatise Hereditary
Genius: An Inquiry into Its Laws and Consequences in 1869. Unfortunately, it was Galton
too who was to give the “eugenics” movement its name.



110 Evolutionary Finance

within all investor decision-making, Behavioral Finance has made great
strides at countering some of the more outlandishly stringent belief structures
purveyed by the Strong EMH/traditionalist finance school of thought. That
said, as touched upon in Chapter 3, Behavioral Finance can still be criti-
cized for treating information as though it were some intangible commodity.
In particular, Behavioral Finance has displayed little understanding of the
microfoundation building blocks for what we as investors come to perceive
to be “information” in the first place. These concerns aside for the moment
however, there is one additional criticism that can be leveled at Behavioral
Finance in its erstwhile noble endeavors. In particular, we ask the polem-
ical question - is Behavioral Finance necessarily too “behaviorist” in its
interpretation of investor decision-making?

To begin with, let us take an evolutionary psychology perspective on
investor decision-making. Evolutionary psychology is a rapidly emerging
field of research in the social sciences arena.>* Basically its philosophy is
to argue that the human brain has evolved on a functional basis in much
the same fashion as any other human tissue — in short, the human brain is
a by-product of natural selection. Consequently, it can be argued that cer-
tain elements within the human brain are triggered into action primarily
to respond to various primal needs - fight/flight/fright, sex, communication
and so on - simply because such responses are generally associated with basic
survival/reproduction type behaviors. These responses (and the neurological
hard wiring that accompanies them) are thus positively “screened for” by
the natural selection process. Indeed, it is an increasingly accepted fact that
these instinctual responses are already ingrained within one’s neurological
processes at birth.>> But do such “low brow” instinctual responses also have a
role to play in “high brow” reasoning — such as investment decision-making —
as well? The short answer is — yes they do.

According to Robert Winston (2002) “Instinct, then, is essentially that
part of our behavior that is not learned.”>® Indeed, Pinker (1994) identified
that commensurate with natural selection forces governing the development
of the human brain, both reasoning and rational thought are themselves
(by default) the by-products of natural selection and therefore not com-
pletely “learned.” In other words, one can argue that the basics of even
notoriously “high brow” neural actions are to some extent hereditary (read
“instinctual”) — at least in the sense that they reflect the neurological “hard

54 See Cartwright (2000) for a comprehensive introduction to evolutionary psychology
principles.

55 This purview contrasts diametrically with Behaviorists — a group of psychologists
who believe the human mind is infinitely malleable from birth and is thus primarily
molded by learning and our ongoing life experiences. In other words, Behaviorists
believe that humans are born a tabula rasa — or “blank slate” so to speak.

56 See Winston (2002) Human Instinct: How our Primeval Impulses Shape our Modern
Lives, p. 6.
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wiring” of the evolution of the human mind.’” True, learning and experi-
ence will always play a predominant role in the final outcome of any higher
level thoughts, but it should also be noted that humans evolved to the top
of the phylogenetic totem pole primarily because of a combination of their
nature and nurture talents. In other words, we would argue that Behavioral
Finance may be lacking in its interpretation of the “humaness” of investor
behavior simply because of its failure to take into consideration the notion
of “financial instinct.”58

Surely, as we will readily admit “instinct” does not govern a full 100 per-
cent of investor action — but neither does it have a zero influence either.
Indeed, we would go as far as to argue that try as investors might, they cannot
avoid at least some degree of neurologically ingrained instinctual under-
currents within their actions simply because (like every living organism)
they are the sons and daughters of their primitive ancestors. As demon-
strated at numerous stages in the preceding subsection, we have evolved
to think in a certain way. In short, a certain algorithmic sequence of
“encoding/associating/memorizing/learning” has been “hard wired” into the
human brain and this constitutes the universal foundation for the way we
approach problem solving.>® Indeed, just as this “hard wiring” affects our
purposeful customization of the institutional structure that surrounds us so
that we can better assimilate information, so too have we been “hard wired”
to think about our investment decisions in a particular way. This all-too-
human instinctual neural hard wiring undercurrent to our behavior has so
far been largely overlooked by the Behavioral Finance theorists. Indeed, we
would go as far as to say that a natural “evolution” in the interpretations of
investor behavior would intimate the incorporation of instinctual type stud-
ies into various analyses of investor decision-making in the not too distant
future — as Figure 4.4 demonstrates.®®

57 Indeed, we are in good company in making such assertions. To quote Watson
(2004) p. 405 “Behavior, too, has been critical to human survival, and therefore
sternly governed by natural selection.”

58 As an aside, it is important at this stage not to confuse this nature/nurture “demand”
response of information interpretation with the earlier mentioned nature/nurture
“supply” response. This “supply” response occurs when an information byte with
extremely strong externality potential (x) — nature - is thrust into a sequenced inform-
ational environment conducive to this externality potential being utilized — nurture.
We will outline a little later how ultimately this “supply” response and the investor
interpretation “demand” response do indeed come together.

59 Indeed, “algorithmic” is the correct terminology here. Researchers have illustrated
particular instinctual responses that appear to have a generalized algorithmic neuro-
logical solution sequence. See for instance, Barkow et al. (1992); and Hirschfeld and
Gelman (1994).

%0 Indeed, it is interesting that a relatively new branch of “neurobiology meets
finance” study has recently emerged - aptly named “neuroeconomics.” Initial studies
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An interesting concept one might say, but how to prove our nature plus
nurture hypothesis for investor decision-making? This is certainly not an
easy conundrum to wrestle with. To start with, it takes roughly 1000-10,000
generations (20,000-200,000 years) in evolutionary time for efficacious muta-
tions to arise and spread within the human race. Subsequently, there is little
value in looking for a neurological evolutionary response to the complex
problem of better derivative pricing.®! Rather, in sympathy with the previous

as to the neurological attributes of investor decision-making have proven extremely
interesting — see Lo and Repin (2002) for an example.

61 This would also assume that derivative traders are not only academically sharp but
also reproductively successful. While this may seem fanciful, there is evidence of a
link between wealth and the sheer volume of one’s offspring (and therefore genes)
throughout history.
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subsection, it is memories with the strongest emotion that have the greatest
LTP (recall potential) that provide us with the strongest lead. The archetype
instinctual responses fight/flight/fright are generally extremely strong emo-
tions so searching for memes containing the investor equivalent of these
is likely to provide us with some of the more reliable memetic strings to
associate with particular phenotype pricing behavior (and hopefully, pri-
cing prediction ability). In other words, associating a fight/flight/fright
response with one of our encoded nine possible actionable information byte
forms — BB, BN, BS and others — and then identifying this key informa-
tion byte within a given (particularly strong) memetic sequence is likely to
yield us reliable predictive capability. This is because appropriately encoded
instinctual strong emotions are likely to invoke an investor response that
implies we have found an information byte with extremely strong externality
potential (x).5?

We will discuss these issues in far greater detail in our applied analysis
presented in Chapter 7. Suffice to say now, we feel the incorporation
of instinctual responses in addition to learned behavioral responses is an
essential element for providing a more thorough representation of the true
complexity of investor decision-making. Understanding the primal forces
behind the constant battle between nature versus nurture, frontal lobe
(responsible for higher order thought) versus basal ganglia and amygdala
(responsible for emotion) in driving investor decision-making is crucial in
forming a better understanding of those all-important “fear versus greed”
market dynamics. The evolutionary microfoundation building block struc-
ture toward information within finance that we have presented in Section 4.3
allows us to formalize such behavior in a manner that better enables us to
quantify and classify the stronger emotion instinctual responses and by so
doing, better understand this crucial aspect of observed market volatility.
We do this via the identification of information bytes with extremely strong
externality potential (x). It is these “emotion charged” information bytes
that have a high potential to form pivotal memes, themes and even swings
in overall market sentiment. Take for example the “fear” factor — the typical
investor response to financial crises. Anyone who has experienced such a fear

62 It is here that both the “demand-side” and the “supply-side” of the nature versus nur-
ture debate comes together under our Evolutionary Finance framework. In essence, the
investor’s demand-side nature/nurture condition is split between instinctual and beha-
vioral responses (respectively). Here a “nature” response helps create an information
byte with exceptionally strong externality potential (x). Likewise, from the supply-side
perspective, the nature/nurture debate refers to an information byte with exception-
ally strong externality potential (x) — nature — being thrust into an informational
environment that is conducive to this externality potential being utilized - nurture.
Subsequently, the demand-side nature/nurture condition has a direct bearing on the
supply-side nature/nurture condition via the externality potential (x) link.



114  Evolutionary Finance

gripped market “event” and (with the benefit of hindsight) examined the sur-
prisingly innocuous genesis information byte that acted as a harbinger to this
exceptionally strong investor emotional response will realize the importance
of undertaking analysis such as ours so that we can better develop forecast-
ing methodologies to predict such outcomes. Thankfully, we believe we have
now created precisely such a framework (as represented in Section 4.3) that at
least goes part of the way (if not the full way) toward allowing this important
task to be achieved.

Setting the bounds — the limits on investor information
absorption capacity

This brings us to the final element in our analysis of how investors inter-
pret evolutionary information - the ultimate limits on our ability to absorb
information. According to Winston (2003) the human brain takes in 100 bil-
lion billion “bits” of information in over a lifetime but can only store 100
thousand billion bits. We are therefore forced into discarding some of the
information we perceive. As stated earlier, the anterior cingulatae gyrus (ACG)
plays a key role here by acting as the initial filter for incoming information
and discarding what we don’t need. In terms of our nomenclature specified
for informational genome, one would think such information would be
encoded with an “NN” form - but this is not the case. Null “NN” information
does have the potential to be useful. In building a meme it is the totality of
information that is important. So while an “NN” information byte signal may
not be actionable on its own, when it is associated with additional informa-
tion bytes it could, in turn, form a key constituent of a particularly powerful
meme.* For example, while a given economic release may be a benign influ-
ence for certain assets, when this information is married to a preceding “BB”
and following “SS” signal, it could form a key constituent of a memetic string
that ultimately provides investors with insight as to how to be positioned
(overweight, at benchmark, then underweight) over the duration of the eco-
nomic cycle.®* Subsequently, an “NN” encoding for information does not
mean that this information is deemed unsuitable by the ACG, rather some
information in our various interpretations of the world that surrounds us
must actually be discarded before it even enters the encoding process.

63 This contrasts with the presence of what are known as “introns” (or “junk DNA”")
within biological DNA sequences. These base sequences are not regarded as “action-
able” genetic code. To contrast, some “NN” byte signals - when combined with the
presence of other information bytes — can still be regarded as useful information and
thus comprise an integral component of an “actionable” meme.

64Tt is probably useful at this juncture to make the distinction between “information”
and “data.” “Data” refers to information from which inferences can be drawn. There-
fore, it not only refers to information which is encoded, but actionable components
of this encoded information. In other words, “data” refers to the informational byte
components that make up memes.
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This presents us with a problem — how to ensure the proverbial “baby is not
thrown out with the bathwater.” In other words, investors may be selectively
discarding what on the surface is initially perceived to be “useless” informa-
tion without realizing that when combined with ancillary information this
seemingly “useless” information may have the potential to become extremely
powerful. In fact, this is why a portion of the law enforcement community
regularly undertakes training to learn to absorb information that on first prin-
ciples one would think should be discarded — simply because at times it is the
innocuous information that represents the key breakthrough needed to solve
a major crime. As far as investors are concerned, this oversight is also import-
ant simply because —as we have outlined in Chapter 3 —investors typically use
simple (deterministic) heuristic rules of thumb to help guide their investment
decision-making. Such simplistic rules of thumb (by definition) all too fre-
quently fail to take into consideration the necessary information for plotting
the emergent success and subsequent failure of such rules. This leaves avenues
open for opportunists such as ourselves who have a far more comprehensive
“structured information” approach toward the prediction of the emergence,
maturation and decline of heuristic based trading rules to effectively “prey”
upon other investors information processing fallibilities. Such fallibilities are
an all-too-human shortcoming in response to the inevitable “information
absorption threshold” that each investor necessarily pushes against each and
every day in the market as they attempt to synthesize that vast quantity
of information presented to them. To further illustrate our point, we detail
the selective screening of information that all investors undertake by math-
ematically formalizing a stylized “information absorption threshold” for the
human brain box below.

Imposing limitations — Thresholds on information absorption

Assuming U represents the upper threshold on how much information a given
human being can physiologically absorb and assuming knowledge (K) can be
acquired by an individual at rate I, the simplest way to represent the uptake of
information by any one individual is

K:l(l—%)K U,1>0. (4.16)

Separating variables gives

dK 1

ﬁﬁi@zﬁm' (4.17)
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Integrating both sides gives

dK I
/m = gt+e (4.18)

where “c” is a constant of integration. Using the method of partial fractions (and
taking the antilogarithms of both sides) gives

= beft, (4.19)

where b = ¢V (yet another constant of integration). Assuming the individual
has at least some knowledge when they are born (an assumption entirely con-
sistent with our financial instinct approach) then the amount of knowledge at
time t = 0 is a non-zero integer represented by Ko (and therefore b =Ky /(U — Kp)).
The final solution to the growth in the absorption of knowledge by any human
being is therefore

U

- 4.20
Ce 't +1 ( )

where
C = (U — Ko)/Ko. (4.21)
In graphical form this can be represented as shown in Figure 4.5.

Level of
knowledge

Ko<U

Time
Figure 4.5 The pace of information absorption by the human mind
Compare this outcome with the ever-expanding stock of knowledge represented

in Figure 4.1 and it becomes all too apparent that we as humans are forced to
automatically discard some of the information we perceive.
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So how to overcome this problem of not being able to see the proverbial
“forest for the trees” — and even unconsciously culling these “trees” as well?
As we stated earlier, the answer resides within this book. In short, overcom-
ing this problem is what our entire “structured information” Evolutionary
Finance framework is primarily about. We do this by making investors aware
of what is important and what is not from a near-infinite sequence of the
market (or even for an individual asset’s) information genome. This is done
by providing investors with a comprehensive framework for better under-
standing the actual structure of how information interrelates.®® Investors are
thus less likely to discard what on the surface appear to be innocuous pieces
of information (but ultimately prove to be “informational gems”) if they
better appreciate how each byte of information interacts with other inform-
ation bytes. Hence our preference for a holistic approach toward modeling
the II of information as opposed to a reductionist approach. Unfortunately,
up until now, a comprehensive framework for understanding this process —
piece-by-piece — has not been available. Thankfully this shortfall has now
been addressed by our modelling efforts in Section 4.3 and indeed the true
power of our Evolutionary Finance approach may ultimately reside in bring-
ing to light these less obvious previously ignored information bytes that
form a key piece of the memetic sequence jig-saw puzzle. Everybody knows
the blindingly obvious information byte signals and their appropriate asset
responses — we are generally taught such things at business school — but it
is in the understanding of the less obvious that the greatest potential for
alpha-generation resides.

To display this, Chapter S we will take our evolutionary building block
formalization of information in financial markets one step further by out-
lining a complete evolutionary model of the marketplace. The results are
as interesting as they are powerful. They certainly put to rest the concept
that “information” can be treated as some colorless textureless generic form.
Indeed, we believe the formation of a better understanding of the actual
microfoundation building block structure of information itself could poten-
tially become a key component of any course in investment management.
So now, over to our comprehensive evolutionary model of the marketplace.

65 The fact that we are not alone in developing better methods for individuals to cope
with the “information overload” of the modern world may be in part an explana-
tion as to why the “Flynn effect” (so named after the New Zealand psychologist who
discovered it) of upwardly trending global IQ is now a widely recognized phenomenon.
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Putting it Altogether — An
Evolutionary Model of
the Marketplace

Building an evolutionary model of the marketplace is not an easy task.
Those familiar with intertemporal modeling and high level calculus will
immediately recognize the potentially intractable problem presented by our
foundation assumption that there is a less than perfect distribution of inform-
ation (including knowledge) across investors. If we assume investors are
imperfectly informed - as is necessary for analyst research output to have
any real value - then we run the risk of violating the all-important transvers-
ality conditions that are necessary for a general equilibrium “closure” to a
continuous form infinite horizon model where there is a finite number of eco-
nomic agents.! We therefore could be forced down the path of using a much
simpler (discrete) overlapping generations (OLG) type of framework which
while appealing, is certainly not as elegant as its more sophisticated continu-
ous form cousin. That said, an OLG model does have its uses too — especially
when one wishes to look at the analyst community’s contribution to (and
responses from) the presence of speculative bubbles. Decisions, decisions —
which framework to choose? We opted for the easy way out and decided to
present both types of modeling framework within the body of this book.

To start off with, in this chapter we will present an evolutionary model of
the marketplace under continuous form/finite agent/infinite horizon aus-
pices. We do this because of our liking of its mathematical splendor. To
contrast, in Appendix 2 we present a decidedly simpler — yet nevertheless
appealing — OLG framework that investigates some of the results that will be

1 Why? Tirole (1982) demonstrated that such conditions — even though realistic — have
the potential to force a departure of the actual price of an asset from its “fundamental”
value. It is this condition which causes a violation of transversality conditions under
an infinite horizon, finite population general equilibrium model.
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presented in this chapter but in a more user-friendly environ (which is one
of the principle advantages of this class of model).? Still, we do recognize
that our infatuation with the mathematical elegance of the infinite hori-
zon model does come at a considerable cost. In particular, to get around
the potential transversality condition problem that invariably arises when
we assume an imperfect distribution of information, we need to “trick” the
model by confining the intertemporal choice to the analyst research sector
only. In short, the model presented in this chapter does not cover the pleth-
ora of consumption/investment decisions that a representative investor will
no doubt face on a day-to-day basis, it only covers their research output
wants and desires. Further, when it actually comes to this research sector,
we assume the representative investor who effectively forms the lynchpin of
our model has the ability to perfectly project forward the net worth (at least
in terms for them) of analyst research output. Everything else in their world
however is uncertain — hence their need for analyst research output to assist
this “representative agent” in their decision-making. This is especially the
case when it comes to interpreting the (exogenous) volatile financial world
toward which analyst research output is focused. Yet again, this demonstrates
the voracity of the assumption of a representative investor’s insatiable appet-
ite for a never-ending stream of analyst research. So basically, we are putting
forward an infinite horizon representative agent model where the only thing
this poor soul is sure about is their lack of knowledge and therefore they
know they will always need analyst research to assist them in their invest-
ment decisions. We do not feel that these conditions are major shortfalls of
the model - especially when it comes to its outcomes — but nevertheless, they
should be stated up-front.

In terms of the model itself, basically it is divided into three parts. The
first component deals with ensuring analysts are adequately rewarded for
their research activity over our infinite horizon timeframe. As stated earlier,
this would not be the case had we assumed a “blanket” assumption of
perfect knowledge across all sectors of the economy. After all, since our
fundamental hypothesis is that analysts actively seek opportunities to “man-
ufacture” information thatis interpretive of the (exogenous) volatile financial
market, then a framework needs to be put in place that illustrates the eco-
nomic rationale for analysts undertaking this behavior. Ergo, in sympathy
with our comments earlier, in Section 5.1 we construct an intertemporal
“information consumption” optimization problem as consistent with the
intertemporal framework provided by Ramsey (1928). We then derive the
solution to this intertemporal information consumption problem which has
the particularly appealing attribute of taking explicitly into account ever-
expanding theme variety. Indeed, the actual model itself is an adapted

2 Both models have an “economic growth” foundation as ultimately we view inform-
ation production as synonymous with the process of economic growth in general.
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version of Grossman and Helpman’s (1991) endogenous growth model for
the economy at large as interestingly we find their methodology particu-
larly amenable to exploring both the investor’s insatiable desire for more
information and the ever-expanding theme variety that goes hand-in-glove
with the growth of knowledge overall. It is these information demand con-
ditions which are satisfied at each point in time by the construction of
thematic-orientated information bytes by the analyst community.

The second part of our model deals with what analysts are actively attempt-
ing to explain in their research endeavors via their manufacture of these
information bytes. Having established that analysts will be adequately rewar-
ded for their research efforts, the next step is to attempt to explain precisely
what form their thematic-orientated research takes and indeed, how this
relates to asset prices overall. This is the charter of Section 5.2. In this
section, a number of possible strategic behaviors on behalf of analysts are
discussed - in terms of their choice of topic for their information bytes — and
are then linked back into the intertemporal optimization model presented
in Section 5.1. Furthermore, the asset price implications of such behavior are
thoroughly explored. As will be seen, this is where the true beauty of the
continuous form infinite horizon framework comes to the fore as an inter-
esting range of strategic behaviors (and subsequent asset price responses)
are identified.

Finally, in Section 5.3 we discuss in detail our preferred marriage of the
strategic analyst behavior/asset price dynamics expressed in Section 5.2 and
the investor’s intertemporal information consumption equilibrium condi-
tions expressed in Section 5.1. The result is a unified evolutionary model
of the marketplace where analysts are perpetually rewarded for developing
thematic-orientated insights and ideas in a purposefully strategic manner
which, in turn, form larger informational entities via a molecular-like inform-
ational building block process. It is this “information building” process that
subsequently has a deterministic impact upon the evolution of asset prices.
The calibrations of our preferred model which links this evolutionary-like
information creation and dispersal process to actual asset price dynamics
have a number of notable features that are typically mirrored in “real world”
asset price movements. In particular, we:

1 highlight the tendency for increasing analyst uncertainty as to the prevail-
ing form of market sentiment to result in an increasingly volatile pattern
for asset prices;

2 we illustrate the ubiquity of jump diffusions to new steady-state equilib-
rium positions as analysts ‘herd’ from one perspective on market sentiment
to another; and

3 we demonstrate the potential for substantive shocks to the market system
when feedback between asset prices and analyst strategic behavior results
in price movements that can only be described as calamitous.
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All will be discussed within a framework that takes into consideration the
way information bytes bind together to form memes which, in turn, bind
together to form themes and overall market sentiment. So now over to our
evolutionary model of the marketplace itself.

5.1 Stage I: Developing an intertemporal optimization
model of information production/consumption and solving for
general equilibrium conditions

The investor’s information consumption function — measuring
information appetite

Let us assume that investors display a voracious appetite for new informa-
tion. This appears quite a plausible assumption to make given the plethora
of news services, magazines, newspapers and research organizations all ser-
vicing the market’s apparently insatiable demand for information. How to
incorporate this tendency for information insatiability within a sophistic-
ated intertemporal framework? To start with let us turn to the ubiquitous
“infinitely lived representative agent model” - in this case, as developed by
Grossman and Helpman (1991) — where it is assumed there is a fixed pop-
ulation (Z) of investors who each share identical preferences. Furthermore,
let us assume that each individual investor maximizes their own utility from
receiving a given stream of information over an infinite horizon. Assuming
for simplicity that we will only be dealing with the information aspect of
investors wants and desires, the representative investor’s utility maximand
can therefore be formalized as follows

U; :/ e P VYlogD(r)dr, (5.1)
t

where D(t) represents an index of information consumption at time ¢, and
p is the subjective discount rate applied to future information flow.> The
natural logarithm of this “information consumption index” effectively meas-
ures the instantaneous utility of the representative investor at each and every
moment in time from receiving an infinite stream of information.

Given our earlier cited assumption of the representative investor’s vora-
cious appetite for information, let us attempt to formalize the information
demand condition a little further by assuming the representative investor’s
utility is directly related to “theme variety” (as stated in Chapter 4) with their
preferences extending over a hypothetical infinite range of themes indexed
by j € [0, 00). This ensures there is always an incentive for analysts to under-
take information byte manufacture which may or may not result in new
themes emerging — more on this later.

3 That is, investors prefer more information today rather than tomorrow.
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While on the topic of the investor’s information demand function, note
that at any point in time the total number of themes available for the repres-
entative investor to select from is static. Assuming this given theme variety
at a given point in time can be categorized by the interval [0, '(f)], then the
representative investor’s information utility index across this given array of
themes can be represented as follows

1/

r
D= [/ ga(j)“dj] O<a<l, 5.2)
0

where ¢(j) denotes consumption of information byte ¢ that contributes to
theme j and « is the elasticity of demand for this particular segment of
information.* An important property of Equation (5.2) is that the elasticity of
substitution between any two competing themes, ¢, is constant and greater
than one

1
= 1
e (1—a)>

(5.3)

thus indicating an expanding range of market opportunities for those
analysts who are entrepreneurial enough to be willing to embark upon an
avenue of research that could promote the emergence of a new theme - the
proverbial “big call” as it is known in the industry.’

Since we are only dealing with the information aspect of the investor’s
long-run optimization problem, we can effectively solve the instantaneous
utility maximization condition represented in Equation (5.2) by constructing
a budget constraint of total income at each and every particular point in time
being equivalent to

r
E- / po(ie(i) dj, (5.4)
0

where p,(j) is the component of asset prices that constitutes a reward to the
analyst who manufactures information byte ¢ that contributes to theme j.°

4 Dixit and Stiglitz (1977) have highlighted a number of useful properties of this form
of utility function. In particular, cross-preference stability between competing themes
in the investor’s mind is effectively ensured by a diminishing marginal utility from
consumption of more information bytes related to a particular theme (0 < o < 1).

STt is important here to recognize that an “analyst” per se could just as easily be a
news-presenter, a desk salesperson, an academic, even a financial tipsheet publisher.
The term does not refer only to the generic labeling applied to individuals employed in
the research departments of sell-side and buy-side institutions. Rather, the term applies
to all financial information providers who draw at least some portion of their income
from their information creation role.

6 The implication here is that, as stated at the outset, this is purely an informa-
tion generating and producing society — no other wants and desires are taken into
consideration. This is a necessary simplification assumption for our model.
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Lagrangean optimization yields the following optimal demand condition
for information byte ¢(j) where the representative investor’s income and
maximal utility conditions are equilibrated

I
o(j) = Ep, (i) * / [ ey ai. (5.5)
0

Since Equation (5.4) is effectively measured in nominal price terms and a
necessary condition for intertemporal equilibrium is for the real supply of
information to equate to real demand, then an additional requirement for
intertemporal equilibrium is

D=—, 5.6
7 (5.6)

where pp represents a hypothetical aggregate price index across all indices
reflecting the equilibrium asset prices at which the per unit information
supply (of each information byte) equates to per unit information demand.
Remember, as consistent with Figure 2.3 in Chapter 2, under imperfect
information conditions (Weak/Semi-Strong EMH), a portion of each asset’s
price reflects the reward to information providers. This provides a convenient
bridge between the “well-informed” world of the investor’s decision in terms
of their recognition of the need for analyst research and their less “well-
informed” world of the remaining share of asset prices about which they
remain highly uncertain — hence the need for analyst research. So while the
pp share of the aggregate asset price index that persists for the economy may
be relatively “well-behaved” across time and thus moves in a reasonably pre-
dictable manner, the greater percentage of the remaining share that makes
up each asset’s price within the overall index is highly volatile and therefore
needs to be explained by the collective analyst community’s research output.

For an instantaneous equilibrium at each point in time pp is approxim-
ated by

r 1/(1-¢)
o= [ / pw(i)l’fdi} , (5.7)
0

where, as consistent with our comments earlier, a price basket across all
indices is set to a level so that the rewards to analysts from information man-
ufacture equates to the rewards (read “utility”) to investors from consuming
this information. The information supply/demand optimization problem is
thus easily broken down into an instantaneous optimization condition —
represented in Equation (5.5) — and an intertemporal condition. Substituting
Equation (5.6) into our original intertemporal optimization maximand in
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Equation (5.1) yields
U, = / e "D log E(r) — log pp(7)] dr. (5.8)
t

The above highlights that the intertemporal utility of the investor from the
provision of information by the analyst community evolves in accordance
with the difference between the growth of the aggregate income analysts
receive from information byte manufacture (E) and the growth in the
diversity of themes — as determined (in real terms) by the equilibrium price
index at each point in time. Assuming that investors can borrow or lend freely
at an instantaneous interest rate to finance such entrepreneurial behavior on
behalf of analysts, then a necessary condition for dynamic equilibrium is

—=r—p. (5.9)

Choosing the convenient numeraire of E(t) =1 so that nominal spending
by investors on the information reward component embodied within asset
prices remains constant at each and every moment in time allows us to
identify the intertemporal equilibrium condition for investors in terms of
their information consumption as

r(t)y=p forallt. (5.10)

Importantly however, this is only one side of the coin - the demand-side — of
our model for the intertemporal equilibrium conditions in the provision of
information within financial markets. What about the supply-side? To ascer-
tain the necessary intertemporal equilibrium conditions for information (and
theme) manufacture on behalf of the analyst community we must now turn
our attention toward the nuts and bolts of information production itself.
What are the optimal conditions under which analysts should operate so
that they are effectively generating ideas at a sufficient enough level at each
and every point in time so that an equilibrium is formed with the insatiable
appetite of investors for new strategies? Further, what is the optimal alloc-
ation of resources for this endeavor? It is toward answering these questions
that we now turn.

The mechanics of information production

Within our highly simplified model of information provision within financial
markets it is assumed analysts face a choice of either:

e devoting their time toward producing information bytes to embellish an
existing theme; or, alternately
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e opting to try their hand at compiling the necessary facts and figures to
enable them to produce an information byte that will represent the van-
guard of a new theme for market participants to focus upon - in short, an
information byte with exceptional externality potential (x).”

Let us deal with the former choice — embellishing an existing theme - first.
For starters, it is assumed for simplicity that the production of information
requires no capital input, only labor input, (L), is needed. Under conditions
of general equilibrium, « represents both the marginal utility investors derive
and the marginal product analysts achieve from an information byte within
the given theme range [0, ['(t)]. Across the analyst community we assume
there are constant returns to scale for research so the information production
function for the manufacture of information bytes contributing to existing
themes takes on the relatively simple form

Y = La, (5.11)

where Y is the total information byte output (aimed toward existing themes)
at a given point in time.

Using this production function, analysts manufacture a diverse array of
information bytes aimed at embellishing the existing theme structure. It is
assumed that at any one point in time there is at least one analyst producing
information relating to each preexisting theme. This ensures investors can
select from a veritable smorgasbord of themes an information byte necessarily
suited to satisfy their thematic information wants and desires — as consistent
with the notion expressed in Equation (5.2).

Analysts who concentrate on producing information bytes that contrib-
ute to these existing themes attempt to maximize profits consistent with
the following

() = p,(Ne(j) — wo()), (5.12)

where the first term on the RHS of Equation (5.12) represents the total rev-
enue from producing information bytes for theme (j) of quantity ¢(j) and
the second term represents the total cost of such theme production.® Sub-
sequently, analysts maximize profits by charging for their research a price
which takes into consideration both wage costs (w) and the marginal product

7 In Chapter 6 we will outline the Game Theoretic underpinnings motivating analyst
choice toward both endeavors.

8 In Chapter 6 we will build upon the profit incentive for analysts to produce informa-
tion bytes by examining the Game Theoretic implications for analysts profits (payoffs)
from producing differing formats of information bytes under a highly competitive
environ.
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of their labors («). This yields a “per byte” pricing equation of
LW
Po(j) = —, (5.13)
o

where, as consistent with our discussion in Chapter 2, p, constitutes a share
of the aggregate price of any asset — we will dwell more on this in Section 5.2.
This profit maximizing pricing behavior on behalf of analysts thus implies as
per “thematic” operating profit of

1-—
7= T"‘ where E = 1. (5.14)

Generating new themes: How it is done and
the implications of this behavior

What happens if an analyst decides to devote some portion of their time
toward attempting to produce a new theme rather than slavishly producing
information bytes under the old theme regimen? If an analyst decides to
try their hand at generating a new theme by producing an information byte
with exceptionally strong externality potential (x), then it is assumed they
can generate new thematics at the rate

I =Ly, (5.15)

where

Ly is the amount of labor time devoted to new thematic research; and
n is the productivity in the new thematic research area.

Consistent with our comments in Chapter 4, and assuming a direct link
between the stock of knowledge (Kr) and the number of new themes that
have previously been developed, then

Kr =T, (5.16)
subsequently it is possible to model the growth of 5 as some function of Kr

1 =f(Kr). (5.17)

Assuming the most simple form - an assumption we will relax in

Section 5.2 - of direct proportionality between the stock of knowledge, the

number of themes in existence and the analyst’s productivity in producing
new themes so that

Kr=T=n, (5.18)
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and noting the cost of new theme development is effectively wLrdt while
the value of this activity is v(Lrn)dt, then value maximization by the ana-
lyst community requires L to be set as large as possible whenever vy > w
or zero when vi < w. Equilibrium in this sector of analyst research endeavor
thus necessitates

> v with equality at I > 0. (5.19)

sl=

Assuming constant returns to scale and free entry into new theme search,
then this equality condition is satisfied. What does this imply? At any pointin
time, there will always be a sufficient incentive for a share of the analyst com-
munity’s time to be spent searching for new themes. However, this percentage
representation of the collective analyst labor market is effectively bounded
by the value investors place upon new theme arrival. Crucial to all this is
the variable n — the productivity of analysts in the new thematic research
area — which gradually improves as the number of themes (I') expands.

How should one interpret this relationship? Well, in short, analysts learn
from the past mistakes of others which helps them to better exploit possible
themes going forward. Just as Moore’s Law is effectively a productivity rela-
tionship highlighting a rise in a computer’s information processing power, so
too there is a productivity dividend to reap from more efficient information
processing on behalf of analysts. For us, this link is formalized via a propor-
tional relationship between the stock of knowledge (Kr) at any given point in
time and the productivity of analysts in the new thematic research area ().
That said, as mentioned in the introduction to this chapter, in Section 5.2 we
will investigate in greater detail the potential array of functional forms that
could be considered as possible alternatives for this link between the stock
of knowledge (Kr) and the productivity of analysts in new theme search ().
We do this via categorizing new theme research into various types and then
examining how this relates to asset prices overall.

The financing of analyst information manufacture

All the above would effectively come to naught if there weren’t some form of
financing arrangement to ensure analysts engaged in new theme research are
somehow rewarded for their efforts — at least in the form of some dividend
payment system. Further, our model requires a sophisticated enough capital
market structure to be in place to allow investors to smooth their intertem-
poral information consumption via the purchase of both equities and bonds.
In short, to solve for general equilibrium we require a financial sector to be
loaded within our framework and the purpose of this subsection is to do
just that.

First, to intertemporal consumption smoothing. Since, as stated earlier, we
are only dealing with the information aspect of the representative investor’s
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wants and desires, we assume that this individual uses the per theme profit
return represented in Equation (5.14) in their calculations of the distribution
of their savings between bonds and equities to facilitate intertemporal con-
sumption smoothing for the stream of information they expect over their
infinite life span. An “equity” under these conditions represents a share in a
“research firm” which in essence, constitutes the portion of an analyst’s time
devoted toward the construction of a new theme.

It is assumed that each analyst is effectively “branded” by investors with
the theme they create and thus have intellectual monopolistic rights over its
dispersal within the market — primarily via the publication of information
bytes. These intellectual monopolistic rights are non-transferable. Further,
it is important to realize that for the moment our “equity market” refers
only to research sector equity prices — because as yet we are not considering
wider asset prices which will be explicitly introduced into our modeling in
Section 5.2.°

Subsequently, we are faced with a reasonably simple intertemporal optim-
ization problem of attempting to match the information demands of the
representative investor with the information supply conditions of the ana-
lyst. Under general equilibrium conditions it will be displayed that analysts
and investors are one and the same — they just happen to be treated as oppos-
ite sides of the production/consumption problem until the very end of our
model. But for the moment, we are still working under assumption that
these “two sides of the same whole” are being treated as though they were
separate entities.

Ergo, for the representative investor, the return on our “research sector
only” equity is the average per theme profit return (), assuming all profits
are paid in the form of dividends, plus any expected capital gains or losses,
(v). Why do such capital gains and losses arise? A quick examination of
Equation (5.14) illustrates that as the number of new themes (I') increase,
the operating profit per thematic brand declines. Consequently, we assume
the representative investor has perfect foresight as to the evolution of (v) to
take such capital losses into account in their financial decision-making.!®

This makes the derivation of our equilibrium financing condition relat-
ively simple. Since the return on bond investment is simply the nominal
interest rate (r) multiplied by the value of bonds held (v) and for simplicity
it is assumed that stocks and bonds are perfect financial substitutes within
the representative investor’s portfolio, equilibrium in our simplified financial
sector requires that the return from holding research firm equity is the same

9Indeed, it is important here to make the distinction between the “endogenous”
form of equity — in the embodiment of a share in a research producing firm — with
the “exogenous” variety which represents the external equity market that the analyst
community is attempting to explain.

101n fact, this is the only perfect foresight that our representative investor possesses.
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as the return from holding bonds
T+V=rv. (5.20)

But what of the incentive structure for analysts engaged in new theme
research? As we mentioned earlier, under general equilibrium conditions
these individuals are one and the same as the representative investor. That
said, while they are still being treated as separate entities it is perhaps useful
to think of these analysts as attempting to maximize the stock market value
of their “research firm.” This entails setting information byte prices at a level
dictated by Equation (5.13) so that the discounted present value stream of
future profit can be represented as

v(t) = f e OOl () d, (5.21)
t

where R(t) = cumulative discount factor applicable to profits earned at time ¢.
Note that by differentiating Equation (5.21) with respect to t we ascer-
tain Equation (5.20).

Equilibrium in the labor market: Matching analyst supply to demand

Next, we turn our attentions to the labor market. Using (L) to denote the
aggregate analyst labor time available at each and every moment that is
under consideration within our intertemporal framework, it is a simple case
of matching this aggregate analyst labor supply to aggregate labor analyst
demand to achieve our the final sectoral equilibrium condition within our
model. We do this before moving onto general equilibrium estimation — and
thereby effectively solving the model overall.

Essentially there are two parts to the demands upon analyst time — demand
for analysts in manufacturing information bytes under the existing theme
regimen and demand for analysts to devote time toward new theme research.
We will deal with each separate demand requirement in turn next.

First, let us focus on the demand for analyst time to produce information
bytes relating to existing themes. Since we have earlier chosen the conveni-
ent numeraire of setting total income at each and every point in time being
equivalent to E(t) = 1 and we know that the profit maximizing price per byte
in the provision of information relating to existing themes (p,), it is straight-
forward to ascertain the total demands upon analyst time in this sector of
the research market as (1/p,). Why? Simply because (1/p,) effectively repres-
ents the number of information bytes sold. As for the demands upon analyst
time devoted to new theme research (Lr), rearrangement of Equation (5.15)
quickly yields (F /n) as the demand condition in this sector of the research
market. Subsequently, combining our two labor demand conditions with
our labor supply condition gives us an overall equilibrium condition for the
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analyst labor market of
r 1
L=—+—.
n Py
Finally, note that since employment must be non-negative, a necessary side
condition to the above is that the equilibrium price per information byte
must satisty

(5.22)

1
Pz (5.23)
This is derived by setting (I'/n = 0) in Equation (5.22).

General equilibrium: Putting all the pieces together
to solve the model

Having methodically laid the foundations of each relevant sector within our
model, we are now ready to provide a general equilibrium solution for inform-
ation production and consumption within financial markets. Given I'(t) and
v(t) we can solve for equilibrium prices and resource allocation and by doing
so satisfy our intertemporal equilibrium requirements. Therefore, our results
are conveniently able to be expressed in terms of (I') and ().

Combining Equations (5.13), (5.19) and (5.23) gives the boundary
condition

o

V= Iy (5.24)
which states that the development of new themes will only take place when
the reward for such behavior is sufficiently high. Thus I" > 0 only occurs when
7 > 0. To solve for I we use the labor market equilibrium condition represen-
ted in Equation (5.22), the equilibrium price for research condition specified
in Equation (5.13) and the resource allocation maximization requirement in
the new theme sector represented by Equation (5.19) to give the emergence
of new themes under general equilibrium as

o o
Ln—— v> In
= Y o (5.25)
0 V< —
Ln

Next we use the long-run capital market equilibrium condition identified in
Equation (5.20) along with the intertemporal consumption maximization
condition given in Equation (5.10) and finally the per thematic operating
profit condition represented in Equation (5.14) to derive the evolving valu-
ation that investors place upon analyst research output under conditions of
general equilibrium as

11—«
r

(5.26)

V= pv—
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Our system of equations for the intertemporal optimization of information
production and consumption within financial markets is now formalized
into the dual differential Equations (5.25) and (5.26) along with the bound-
ary condition represented in Equation (5.24). This completes our model of
the optimal conditions for the intertemporal production/consumption of
information within financial markets but then begs the wider question —
how does this information output (whether of the “existing” or “new” theme
variety) influence the wider economy asset prices that are presently external
to our framework? It is to this question that we now turn in the next section
of this chapter.

5.2 Stage llI: Linking analyst research output
to asset price dynamics

Having established a framework that effectively ensures analysts are
adequately rewarded for research activity across time, the next issue to face is
the implications of this research activity for asset markets overall. In choos-
ing a link between analyst research output and asset prices, a number of
potential functional forms spring to mind. We will consider just a few here
but hopefully we will leave the reader with the indelible impression that
the generalized model for the provision of market information that has
been presented in the preceding section is amenable to a whole variety of
interesting interpretations as to how information and asset prices ultimately
interact.!! That said, given our evolutionary focus on the way information
bytes interrelate to form memes, themes and then overall market senti-
ment, most of the explanations provided in this section will have at their
root foundations some form of biological/evolutionary dynamics. Indeed,
we felt that such biological-based system dynamics provided the most fertile
ground for developing a comprehensive model of the evolutionary principles
underlying the formation of information in financial markets. Thankfully
our intuition proved correct — as will be displayed by our preferred model
described in detail in Section 5.3. But for now, let us more closely exam-
ine the building blocks of our evolutionary framework as to the way analyst
information provision and asset prices actually interrelate.

Market sentiment oscillation

Let us now assume a particular functional form for the growth in productivity
in the new theme research sector. This chosen functional form makes the
key distinction of being nonlinear as opposed to the simple (linear) direct
proportionality link between the stock of knowledge, the number of themes

n fact, we will expand upon this array of models in even greater detail in
Chapter 6 where we explore the microfoundations of analyst interaction using Game
Theoretic analysis as a basis to build a deterministic driven model of Evolutionary
Distributional Form.
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in existence and the productivity of analysts in producing new themes — as
expressed in Equation (5.18).

How is our newly hypothesized nonlinearity introduced? To do so, we
formalize the novel concept of “market sentiment oscillation” in differenti-
ating between the types of new themes introduced by the analyst community.
In essence we argue there is some type of “bull/bear” new theme saturation
threshold for investors in the sense that too many new themes being intro-
duced at any one point in time under either the “bull” or “bear” banner
generates an inevitable investor backlash where investors start to prefer a
contrarian viewpoint to be expressed in new theme generation. This desire
for a contrarian viewpoint eventually grows to such an extent that it becomes
the dominant form of market sentiment prevailing in analyst new theme
generation — so it too eventually suffers the same fate as its predecessor and
the pendulum of “bull/bear” sentiment preference effectively swings back
the other way.

How to formalize these cyclical swings within investor preferences for every
new bull/bear thematics? The answer resides with a simple Sine curve, so
what we now do is — taking into consideration Equation (5.18) — we replace
Equation (5.15) in the model we developed in the preceding section with
the following

I'=Lr [(é) - wsin(n)] (%) >0, O<a<l1 (5.27)

where

(1/@) is investor’s underlying desire for new themes; and
¥ is investor’s bull/bear saturation threshold.

How does the above alter the dynamics of our model? Well, for starters
note that we now have extended what was previously a purely quantitative
preference on behalf of investors for new themes into a qualitative prefer-
ence as well. As I" — L [(1/&) + ] the representative investor’s appetite for
a change in market sentiment begins to wane — they are happy with the
prevailing orthodoxy of analyst opinion in existing theme production — and
new theme production (F) actually starts to slow down to the point where it
eventually declines. This is a classic case of the market becoming dangerously
too complacent with a dominant viewpoint. Thankfully however, I" finally
slows down to a point where the lower bound of the market’s bull/bear sat-
uration threshold begins to be reached as I" - Lr[(1/a) — ] and investors
begin to cry out for a contrarian viewpoint. Subsequently, the pace of new
theme creation once more begins to rise. At each point in time I itself is
monotonically increasing, as it is only the pace of new theme creation that
alters under our bull/bear scenario. One way to display these results is with
the aid of a simple calibration of Equation (5.27) itself.
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If one looks closely, you can see the minor ripples in Figure 5.1(b). These
ripples represent the swings in the pace of (F) A cursory examination of
various alternate calibrations of our market sentiment oscillator illustrated
just how dynamically unstable such a feedback induced system is. Increas-
ing the investor’s bull/bear saturation threshold () incrementally illustrated
increasing degrees of instability until a truly chaotic sequence manifested
for v > 2.0. This stands to reason as the higher one raises ¥, the more
draconian the representative investor’s attitudes are toward their degree of
comfort or discomfort with the ruling collective mindset on behalf of the
analyst community. Incrementally raising ¢ quickly approaches a point
where negative feedback results in an almost schizophrenic investor response.
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We will examine such chaotic sequences in greater detail in our preferred
model presented in Section 5.3 but for the moment let us focus on deriv-
ing the new general equilibrium conditions for this particular extension to
our model — by substituting Equation (5.27) directly into the generalized
information provision model presented in the previous section.

As can be seen later, substituting Equation (5.27) into the model presented
in the previous section does not alter dramatically our general equilibrium
conditions but it does - via a change in the boundary condition and 7 itself —
alter the pace of I". So our general equilibrium conditions under a market
sentiment oscillation framework now become

L[(l)—t//sin( )}—5 V> al
o \a P T e — g sine)l! (5.28)
0, —.
"= LI /a) — ¢ sin()]
and
. l1-«
b= 12 (5.29)

The inclusion of the (¢/v) term into the pace of I' under general equi-
librium does not dramatically alter the type of dynamics illustrated in
Figure 5.1 — with the obvious exception that the order of magnitude in
the calibrations will change. More important however is how these altern-
ations in the pace of I" feed directly into asset prices. Assuming the most
simple of forms - a one-to-one link - between the publication of informa-
tion bytes under the collective “bullish”/“bearish” sentiment banners and
actual movements in asset prices, then the oscillations apparent in I" will
be reflected in asset prices too.!? In other words, if we assume a bullish
market sentiment information byte carries with it a “BB” information byte
encoding while a bearish market sentiment byte carries a “SS” encoding,
and assuming these binary “buy”/“sell” signals are reflected in asset prices
at large, then the actual aggregate market index for assets presently exogen-
ous to our enclosed information production/consumption framework will
actually mimic the pattern of behavior exhibited by I'. In the following rep-
resentation of our model we pursue this thought in considerably more detail
by explicitly modeling the formation of encoded information bytes by the
analyst community.

12 Such a linkage has firm foundations — as exemplified by our exposition of Fama’s
“Fair-Game” in Chapter 2. Also, Maheu and Mccurdy (2004) have demonstrated such
a linkage at the empirical level. Later in this chapter (and then again in Chapter 6) we
will extend this assumption to allow for the presence of complex nonlinearities that
typically arise in the presence of memetic information (M).
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The bull/bear analyst cycle

What happens if the swings in market sentiment are not so much driven
by investors desires for a change in consensus analyst opinion but rather by
the actions of the analysts themselves? How best to formalize this “supply
driven” response to the forces governing the cyclicality in market sentiment?
In this particular subsection we aim to address this very question and by so
doing presenting an endogenized version of the encoding of information
bytes (¢,) that we presented in Chapter 4.

Here we measure the analyst community’s output of information bytes
(which are then categorized into various themes) in terms of their contemn-
poraneous and latent signaling effects — BB, BS, SS, SB — for a representative
asset (i) that resides external to our model of intertemporal information
consumption/production. For simplicity, we assume information bytes are
categorized into separate themes on the basis of both this recommenda-
tion status for the representative asset (i) and the timing of each theme’s
creation. As for the representative asset (i) itself, it reflects the average over-
all (exogenous) asset market response to each individual information byte’s
recommended “buy” (B) or “sell” (S) signal. For the moment, we will ignore
non-actionable “neutral” analyst recommendations so that the categoriza-
tion of each information byte into various themes (j) can be detailed with
the aid of the following dual differential equation system

Bo(ij) =By (i) and £&,¢>0 (5.30)
B1(ij) = —¢Bo(ij), (5.31)
where

By (ij) is the contemporaneous “buy” signal encoding for an information byte
published under theme j and as reflective upon representative asset i; and

B (ij) is the latent “buy” signal encoding for an information byte published
under theme j and as reflective upon representative asset i.

Within this framework a “minus buy” equates to a “sell” so there is no need
for any formal representation of the sell signal “S” in either Equation (5.30)
or (5.31). As each new information byte is produced, we assess its impact
(encode it) in terms of its signaling for the representative asset (i). This broad
buy/sell recommendation is then interpolated as either a generic “buy” or
“sell” recommendation for the entire market for a particular information
byte. It is the aggregate net balance of published information byte recom-
mendations that will tilt the weight of existing themes toward an overall
“bullishness” or “bearishness” assessment at any given point in time and
will thus determine swings in market sentiment. Once more it is consider-
ably easier to comprehend the overall dynamics of this system via a simple
calibration of the differential equations themselves.
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Assuming for simplicity a one-to-one linkage between the encoding of
information bytes and actual movements in asset prices, it immediately
becomes obvious that analyst “herding” toward either a net bullish or net
bearish position generates cycles in the growth of prices for our representative
asset i and through this, the growth in the overall market index. This pre-
dominantly cyclical behavior on behalf of analysts in the format of their asset
price recommendations arises thanks to the presence of the negative feedback
expressed in Equation (5.31). This negative feedback ultimately influences
both the contemporaneous and latent aspects of analyst recommendations —
hence the regular clockwise cycle between BB, BS, SS and SB. What rationale
is there for such obviously pro-cyclical behavior on behalf of the analyst
community? Consistent with the previous subsection, the presence of neg-
ative feedback toward the degree of net bullishness or bearishness expressed
en masse by the analyst community could represent some form of saturation
in terms of investor preferences for research falling under the umbrella of a
particular form of market sentiment. Alternately, analysts themselves may
induce such behavior as they attempt to “brand” themselves via a “big call”
when they publish an information byte with exceptionally strong externality
potential (x) — which, in turn, causes the emergence of a new (contrarian)
theme. Under these conditions, the incentive for producing product differ-
entiating contrarian views obviously grows the more the market becomes
beholden to a particular dominant viewpoint. Still, irrespective of the forces
that govern it, such clustering on behalf of analysts in terms of their opinions
is a regular feature of what we observe in “real world” markets and proves to
be a nice result for this form of appendage to our model.!3

Finally, note that the paths expressed in both diagrams in Figure 5.2 illus-
trate the presence of increasing returns. This is because the fundamental
model expressed in Section 5.1 has not been altered in any way by our
suggested appendage of a “buy/sell” encoding of information byte output.
Subsequently, the number of themes published (I') remains a monotonically
increasing function - all we have done here is classify some of the dynam-
ics that can assist in forming a better understanding of the actual format
of new themes as they emerge. Likewise, by actually encoding information
bytes and relating this to both theme formation and actual swings in overall
market sentiment, we are able to form an effective bridge between the endo-
genous asset price sector of the model (the equity held in analyst research
firms) and the exogenous (imperfectly understood) asset price markets of the
wider economy. This is done in accordance with each information byte’s
recommendation for the representative asset (i) and it is through this that
we form an interpretation for the growth in asset prices overall. Since we

13 Indeed, this relative theme preference “clustering” exhibited by analysts will be
developed far more extensively in Chapter 6. Here we describe the Game Theoretic
underpinnings of analyst decisions in determining the “theme format” of a particu-
lar information byte and how this decision-making process can ultimately come to
influence Evolutionary Distributional Form.
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have ensured in Section 5.1 that the intertemporal aspects of the information
production/consumption decision remains effectively exogenous to any such
encoding process, we have not altered the general equilibrium conditions
represented in Equations (5.25) and (5.26) in any way with our suggested
appendage to our model. All up, a nice outcome.

Research pulses

Inspiration rarely comes in a smooth uniform manner, but more in the form
of short-sharp bursts. Further, inspiration is often followed by failure and idea
degradation as what were once thought to be worthwhile avenues of research
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endeavor become discredited. How best to incorporate such “research pulses”
into our framework of information production/consumption presented in
Section 5.1? Again, we turn toward a dual differential equation system

D =8y + By sin(k — ) (5.32)
and

K =68, + B sin(® — k), (5.33)
where

v is the “inspiration” which assists analyst productivity in generating new
themes;

k the “degradation” which retards analyst productivity in generating new
themes; and

3,8 is the constants affecting the rate of inspiration as opposed to
degradation.

So far so good, but to complete this appendage to our model we need to
incorporate such “research pulses” into the intertemporal framework presen-
ted in our information production/consumption model outlined earlier. The
way we do this is to directly relate idea inspiration/degradation to the pace
of new theme construction - as represented by the equation

=L —x)y, (5.34)

which replaces Equation (5.15) in our model presented in Section 5.1.

Now that we have the basics of our suggested adaptation to the model, we
will once again call upon the process of calibration in attempting to explain
the dynamics of the system of equations presented earlier in a fashion that
is both user-friendly and concise.

As was the case with our earlier presented market sentiment oscillator,
if one looks closely at Figure 5.3(b), you can see the minor ripples. These
ripples represent the swings in the pace of (F) thanks to the research pulses
formalized in Equations (5.32) and (5.33) — and as dictated by the relative
strength of inspiration versus degradation in these respective equations. Yet
again, a cursory examination of various alternate calibrations of this dynam-
ical system yielded chaotic results for 8;, 8, > 2.0 due to the presence of
negative feedback expressed in both Equations (5.32) and (5.33). As for gen-
eral equilibrium, once we insert Equations (5.32-5.34) back into our original
model presented in Section 5.1, and assuming Equation (5§.18)-Kr =T =n -
still holds, then general equilibrium conditions for our intertemporal model
of information production/consumption under an appendage of research
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pulses become

Lo ) o o
_K n - T v > T o N
= v L@ —sm (5.35)
0, V< —————.
L — 1)y
and
11—«
D = — . 5.36
v=py - (5.36)

Again, as was the case with our market sentiment oscillator, the inclusion of
(a/v) into the pace of I" under general equilibrium does not dramatically alter
the type of dynamics illustrated by our suggested appendage to the model
(and illustrated in Figure 5.3) - in particular, “research pulses” still occur,
only the order of magnitude of the calibrations change.

However, the implications for asset prices in the wider economy (presently
exogenous to our model) under our “research pulses” mechanism is a little
more subtle. Assuming the simplest of all possible interpretations with
each “new theme” being contrarian to its predecessor, then such pulsat-
ing activity in new theme creation will also be reflective in the pattern
of asset pricing (assuming there is a direct link between overall theme
recommendation and asset prices at large within the wider economy). Obvi-
ously, if one were to assume a more complex relationship between each
new theme’s eventual appearance and asset prices in our (presently exogen-
ous) wider asset market, then one could explain more elaborate behaviors
on behalf of these asset prices in response to our hypothesized “research
pulse” mechanism. Still, we feel the suggested appendage to our model in
its present form nicely explains the overall concept and we flag possible
extensions to this basic concept as a potentially worthwhile avenue of future
research.

Contrarian thought contagion

Of all the suggested appendages to our model we have presented thus far,
it is “contrarian thought contagion” that has the most obvious linkage
to the dynamic systems research readily identifiable within the existing
biological/evolutionary literature. Advocates within this specialist field of
academic endeavor will soon recognize that the equations presented later
are largely commensurate with the work of Lotka (1925) and Volterra (1931,
1937) in their attempts to explain predator/prey fish dynamics in the Upper
Adriatic post World War I. Indeed, the rationale we use in presenting such a
model here is that just as there is a constant battle between predator and prey
in the natural world, so too there is a constant battle between contrarian and
dominant thoughts (read, “ruling orthodoxy” thoughts) within the collective
analyst community’s mindset.
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How to model this phenomenon? Let us start by hypothesizing that
contrarian thoughts have a tendency to spread like an epidemic as they
“infect” the recommendations espoused by analysts in the publication of
their information bytes. Next, let us assume that there is in place a dominant
form of market sentiment (v) that can be either bullish or bearish at initi-
ation and which is growing in its dominancy (as measured by the net share
of information bytes consistent with this viewpoint) at a rate . In short, this
dominant form of market sentiment effectively represents the ruling share of
collective analyst opinion as to their bullishness or bearishness — thus forming
the “ruling orthodoxy” viewpoint.
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Given these conditions, it is relatively easy to model the “contagion” of
a contrarian mindset into this ruling orthodoxy of collective analyst opin-
ion by specifying a rate of converts (x) as they come into contact with
the (minority) contrarian grouping (=) who subsequently waste no time in
converting the “dominant sentiment” believers to their contrarian cause.!*
However, without a worthy foil, contrarians are assumed to decline at the
specified rate (1) simply because if one wants to be a contrarian, then it is
helpful to have in place a dominant viewpoint to be contrarian against. This
dominant/contrarian parasitic poaching of each other’s members within the
collective analyst community can thus be illustrated using the following dual
differential equation system

V=1— xvw (5.37)
and

= —Aw + XV, (5.38)
where

v is the dominant share of market sentiment as represented in published
information bytes;

w the contrarian share of market sentiment as represented in published
information bytes;

¢ the rate of “natural increase” in dominant sentiment share of published
information bytes;

A rate of “natural decrease” in contrarian sentiment share of published
information bytes; and

x is the convert rate to contrarian viewpoint as dominant sentiment analysts
interact with contrarian sentiment analysts.

Again, as was the case with the suggested appendage to our model presen-
ted in the previous subsection, if we assume information bytes are categorized
into separate themes on the basis of both their recommendation and the
timing of their creation, we now have a “byte to theme,” “theme to market
sentiment” framework. Furthermore, the actual format of the analyst recom-
mendations in this escalating structural hierarchy will be oscillating between
various phases of “bullishness” and “bearishness” (dominant/contrarian) as
the following calibration of our system in Figure 5.4 demonstrates.

However, there is one factor that is worth noting. While we once more
observe an obviously cyclical behavior in the collective analyst allegiance
toward any particular form of market sentiment, one important feature
which differentiates the results presented here from either the “market

14 Obviously, instrumental in such contagion is the degree of conversation between
analysts. Indeed, Shiller (1995) indicated that conversation is critical in the contagion
of popular ideas about financial markets.



142 Evolutionary Finance

T

n

o
Dominant (v)

1.5
1.0
g %
- RS L
SRR, 0.5
KRR o
T T T T 0.0

T
0.0 0.5 1.0 15 2.0 25
Contrarian (o)

Contrarian

Dominant

Net share of the # of new themes

1 55 109 163 217 271 325 379 433 487 541
Time

Figure 5.4 Calibration of contrarian thought contagion - v, @ =1, :=0.09, A =0.03,
x =0.08

sentiment oscillation” model or the “bull/bear analyst cycle” model that
were outlined earlier is that we now express our results in terms of the
“net share of information bytes in existence.” This chosen format for our
modeling generates some particularly interesting interpretations for negative
values of either v or @ as either “negative share contrarian” or “neg-
ative share dominant” implies a switch in the original directionality of
contagion expressed in Equations (5.37) and (5.38). Such a switch infers a
“role-reversal” circumstance of dominants infecting contrarians rather than
vice versa — obviously, the “poaching” of members from opposing sides of
the thought spectrum cuts both ways. This only goes to show that ruling
orthodoxies have a tendency to change through time simply because what
starts out as a surreptitious poaching of analysts from the ruling orthodoxy
(which, in turn, creates oscillations) eventually becomes so serious that what
is perceived to be the “ruling orthodoxy” actually changes.
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Extending time within our chosen calibration soon revealed that when
such negative “share dominant” or “share contrarian” values appeared they
tended to act as a harbinger for increasing instability within the system
overall. Indeed, the further one extended time the more unstable our sys-
tem became for our assumed calibrations. Once more, assuming a relatively
simple relationship between the movement in asset prices and the net weight
of analyst “bullish” or “bearish” opinion (in other words, market sentiment)
then it is possible to argue that this oscillatory (and potentially chaotic) beha-
vior exhibited in analyst views will also be reflected in asset prices at large.

Finally, let us close our analysis of this particular appendage to our model
by confirming that since we have not altered any of the fundamental equa-
tions in the framework for information production/consumption presented
in Section 5.1 - remember, we are talking about the net share of (F) in
this particular appendage to the model — we have not altered the general
equilibrium conditions expressed in both Equations (5.25) and (5.26). Sub-
sequently, we have yet another relatively straightforward adaptation to our
model for linking the perpetual stream of analyst research output to actual
asset price dynamics in the wider economy. Now we turn our attention
toward detailing our preferred appendage to the intertemporal information
production/consumption framework we presented in Section 5.1.

5.3 Stage lll: Highlighting our preferred evolutionary
model of the market — constructing the informational
genome of asset prices

So what is our preferred model? Certainly all of the models presented in
Section 5.2 have their relative merits — but many have drawbacks too. What
we are aiming for is a model that links the infinite stream of analyst output
established in Section 5.1 with asset prices — but sufficiently generalized so
that we can explore a number of features we observe in “real world” asset
markets. Further, a necessary condition for such a model is that it must not
disrupt (at least too much) the nice general equilibrium conditions identified
in our intertemporal model of information production/consumption. Does
such a model exist? Taking an eclectic view of some of the key features of the
suggested appendages to our model that have been presented in the previous
section, we feel we have managed to formulate a worthy compromise. The
basic foundations of our preferred evolutionary model in linking the analyst’s
proclivity for continual research output with the evolution of asset prices is
represented with the following differential equation system

P,' = QBo+AABl —|—wPa, (539)
By = 6oB1 + 6oPiBo + voPiB1, (5.40)
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and

By = —c1By — 61P;By — y1PiB1, (5.41)
where
2 = net memetic externality weight placed upon contemporaneous
information;

A = net memetic externality weight placed upon latent information;

A = net sum of latent information enforceable at time t;

o = degree of association between asset price (a) with representative asset
price i;

o = tendency for complementary “research herding” by analysts in their
recommendations - contemporaneous “buys” follow latent “buys” and
contemporaneous “sells” follow latent “sells”;

¢1 = tendency for contrarian “research herding” by analysts in their recom-
mendations —latent “buys” follow contemporaneous “sells” and latent “sells”
follow contemporaneous “buys”;

6o = tendency for reinforcing contemporaneous price herding behavior by
analysts in their recommendations — contemporaneous “buys” follow con-
temporaneous “buys” and are scaled by price movements (with the opposite
applying for “sells”);

01 = tendency for offsetting contemporaneous price herding behavior by
analysts in their recommendations - contemporaneous “sells” follow con-
temporaneous “buys” and are scaled by price movements (with the opposite
applying for “buys”);

y = tendency for reinforcing latent price herding behavior by analysts in
their recommendations — latent “buys” follow latent “buys” scaled by price
movements; and

y1 = tendency for offsetting latent price herding behavior by analysts in their
recommendations — latent “sells” follow contemporaneous “buys” scaled by
price movements.

So what does this rather complicated system of equations necessarily mean?
For starters ¢ effectively controls the intertemporal relationship between
analyst research output — or in other words “research herding.” That is, by
altering the value of ¢ as opposed to ¢; we are able to determine the extent
to which analysts are either producing information bytes that have either
the same final recommendation as those that have preceded it, or alternately
producing information bytes with a different final recommendation from
those that have preceded it. Conversely, both 6 and y control the degree
of “price herding” behavior on behalf of analysts where the feedback from
price activity influences the “buy/sell” recommendation decision made by
analysts — in a positive manner for reinforcing price herding, in a negative
manner for offsetting price herding. Further, by altering the values of @ and
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A we can determine the extent to which externality effects in contemporan-
eous as opposed to latent information will affect an asset’s price — in short,
these variables determine how important the net impact of memetic sequen-
cing is in generating nonlinear price responses from both contemporaneous
and latent signals. Finally, by altering the value of v we can extend our
model of representative asset prices to any asset price across an entire port-
folio spectrum simply by altering the degree of assumed association between
the representative asset (i) and price of the portfolio asset (a).

As can be seen, the beauty of our approach is that it is able to be gen-
eralized to a wide range of interesting observed market phenomena. In
short, simply by altering the aforementioned variables we can model under
a single framework: (1) the tendency for analyst herding in the their recom-
mendations; (2) the potential for speculative bubbles and market crashes to
reinforce this behavior — along with feedbacks between recommendations
and price activity in both instances; (3) the desire for analysts to be con-
trarian and how this is helped or hindered by price movements; (4) the
implications of varying degrees of memetic sequencing in generating non-
linear price responses to the information flow of both a contemporaneous
and latent nature; and (5) the implication of feedback between asset prices
within a specified portfolio of assets that are each following separate analyst
behavioral regimes. And this list of alternatives is by no means conclus-
ive. Further, since we are only encoding research output with our system of
Equations (5.39-5.41) we have not altered in any way the general equilibrium
conditions espoused in Section 5.1 in our model of intertemporal informa-
tion production/consumption - a convenient outcome overall we feel.

So in short, we now have a model where analysts continually produce
and disseminate information bytes and (in the process) sometimes create
new themes — and importantly, are rewarded for doing so. Further, this per-
petual research output flows into a system of equations that affects wider asset
prices via its genome-like sequencing effect as the string of recommendations
interrelate (via a memetic scalar) with the price of a representative asset. It
is this all-encompassing byte to meme, meme to theme, theme to overall
market sentiment explanatory power that makes this particular appendage
to our model far superior to those provided in Section 5.2. What are some
of the more interesting observations stemming from this comprehensive
“information building” appendage to our model? To give the reader some
insight as to the model'’s capabilities we have provided a brief representation
of a number of calibrations of Equations (5.39-5.41) next.

Calibration 1: Increasing analyst uncertainty

Here we calibrate the model in such a fashion that — as consistent with the
bull/bear analyst cycle presented earlier — there is a never-ending cyclicality
in the rotation of analyst recommendations between BB, BS, SS, SB. However,
since we have now endogenized a pricing equation we can directly observe
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Figure 5.5 Calibration of increasing analyst uncertainty — ©=0.01, A =0.007,
A=1,0=0,60=0.01,6p =0,y =0.01,51 =0.02,6; =0.01,y; =0

what effect this boom/bust rotation in analyst preferences has upon the price
of the representative asset i. In doing so, it is important to note that we have
allowed for a greater degree of contrarian research herding behavior on behalf
of analysts (in other words ¢; > o) so there is an increasing tendency for
volatility within the system. As can be seen, this increasing degree of analyst
“uncertainty” as contrarians respond with greater and greater dispropor-
tionality to the ruling orthodoxy recommendations makes for considerably
more volatile representative price action the further one extends time (see
Figure 5.5).

Calibration 2: Equilibrium price convergence

Here we take a different tact. Rather than analyst behavior being destabilizing,
we take the approach that analyst recommendations actually help our system
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Figure 5.6 Calibration of equilibrium price convergence — 2 = 0.04, A = 0.04, A =1,
w=0,¢50=0.1,6p =0.01,0 = 0,51 =0.1,6; =0,y; =0.02

equilibrate. Both ¢y and ¢; are evenly matched. Rather, it is price action —
and in particular, the strength of offsetting latent price herding behavior by
analysts — that forces the system toward an equilibrium price as shown in
Figure 5.6.

Calibration 3: Jump diffusion

Jump diffusion is a frequently encountered phenomenon in financial
markets — can our preferred model appendage replicate this form of pricing
behavior? The short answer is yes. This is done by ascertaining the correct
balance between complementary (so) and contrarian (¢;) research herding by
analysts to instigate an initial upswing phase of the diffusion process. Then,
as the price of the representative asset (i) rises, this effect is counteracted by a
marginally greater weighting for offsetting price herding behavior as opposed
to reinforcing price herding behavior (6; + y1) > (6o + yo) thus generating the



148 Evolutionary Finance

14.0 - Price of representative asset (i)

12.0
10.0
8.0
6.0

4.0
2.0

0.0 -
1 56 111 166 221 276 331 386 441 496 551 606 661 716 771

Time

Figure 5.7 Calibration of jump diffusion - Q=0.06, A=0.02, A=1, w=0,
50=0.9, 6,=0.001, =0, ¢1=0.06, 6; =0, y1 =0.01

downswing (flattening) phase of the typical jump diffusion pattern as in
Figure 5.7.

Calibration 4: Overwhelming sellers

What happens if things go horribly wrong? Just how stable is our system?
Calibrating for excessive contrarian research herding on behalf of analysts
generates the “doomsday scenario” result shown in Figure 5.8.

Calibration 5: Associative asset prices

Finally we come to one of the most interesting — and yet the most difficult —
calibrations of the model. Up until now you may have noticed that in each
calibration we set w to zero as we wished to concentrate upon the forces
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Figure 5.8 Calibration of overwhelming sellers — @ = 0.01, A=0.01, A=1,
w=0,¢c9=0.003,0) =0, y9p = 0.01, c; = 0.039,6; =0.001,y; =0

driving a single asset’s price — the dynamics of the representative asset (i).
Now we alter that assumption by allowing for association between asset prices
operating under different analyst regimens.'S This generates some of the most
compelling (but also unpredictable) asset price dynamics of the model. Such
results stand to reason as it was in response to the cacophony of informa-
tional “noise” generated by such interrelationships and the way that this, in
turn interrelates with asset prices, that resulted in earlier researchers becom-
ing overwhelmed as they attempted to describe the driving forces governing
information/price dynamics. As explained in Chapter 2, their response was

15 A far more simple associative regimen would be to assume that all assets within the
market system are operating under the same analyst regimen. In such a case, all one
needs to do to form a market portfolio of asset prices is to generate the asset price
dynamics for the representative asset (i) and then interpolate these results to the wider
market via the assumed association between assets w — which in this instance would
reflect the degree of correlation between each asset in the market and the representative
asset (i). This particular calibration will not be undertaken here due to its inherent
simplicity.
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essentially to capitulate by arguing that information arrival and its resulting
influence upon asset prices was primarily a “random” phenomenon. We illus-
trate here that far from being random, such a system is truly deterministic — it
simply gives the appearance of being random primarily because (under some
instances) the resulting price action is Chaotic.

To illustrate our point we outline a case of increasingly Chaotic behavior on
behalf of movements in an overall market index. Our market index was con-
structed as the weighted sum of all asset prices contained within our system.
To keep things as simple as possible our “market” is comprised of just two
assets — with a 50 percent equal market capitalization weighting for both
constituents. These assets are assumed to be operating under different ana-
lyst regimens in terms of the calibrated dynamics driving their price action.
That said, both asset prices are argued to be associative in the sense there is
feedback from asset (a) to representative asset (i). The results are shown in
Figure 5.9.

So what does the overall informational genome sequence of our market
index look like under the auspices of our set calibration? Allowing for sim-
ultaneous “buy” and “sell” signals from both asset (a) and representative
asset (i) to effectively cancel each other out (and result in a “neutral” rating
for the overall market index) when they occur in either contemporaneous
or latent signaling form generates the genomic information sequence for our
market index over the last 500 observations of our calibration exercise shown
in Figure 5.10.

Are there any crucial sequences within this informational genome that
appear to act as a harbinger to the increasingly chaotic nature of our model’s
results? In attempting to ascertain the key memetic sequences driving the
market index price dynamics observed within our calibration, we sequenced
each information byte for both asset (a) and representative asset (i) into pairs.
We then compared the various permutations of these sequences vis-a-vis the
market index price response. The results of the average response are rep-
resented in Figure 5.11. As can be seen, different memetic sequences have
demonstrably different impacts on the performance of the overall market
index. Further, some of the most dramatic responses were not the obvious
candidates. Simultaneous “BBBB” and “BBBB” memes for asset (4) and rep-
resentative asset (i) did not always generate the strongest overall positive
price response. Nor did the simultaneous “SSSS” and “SSSS” outcome always
generate the most dramatic negative price growth outcome.

Indeed, this type of result is precisely what our Evolutionary Finance
framework is designed to expose, the way certain sequences of informa-
tion bind together in what some would label as a “biological”/“genetic”
molecular fashion to generate nonlinear informational impact (II) responses
in asset prices — that are not always obvious from the outset. Without doubt,
this represents but the “tip of the iceberg” and space limitations prevent
us from exploring every possible permutation of the various calibrations
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Figure 5.9 Calibration of associative asset prices — representative asset (i) @ = 0.01,
A =0.01,A =10 = 0.01,50 = 0.045,6p = 0.01,y = 0.01,5; = 0.01,6; = 0.01,
y1 = 0.01; associative asset (a) 2 = 0.01,A =0.01,A =1,0 = 0,59 = 0.01,6p = 0.01,
yo =0.01, 51 =0.063,0; =0.01,y; =0.01

of our preferred extension to the intertemporal model of information
production/consumption outlined in Section 5.1. However, before closing,
let us return to the issue of the identification of key memetic sequences — in
particular the visual representation of such, as this will form an integral part
of our applied analysis presented in Chapter 7 of this book.

As stated at the outset, what we are looking for is the financial market
equivalent to Watson and Crick’s double-helix DNA structure. A good place
to start is via an examination of the inner core of the information genome
itself. How is this done? We can do this by using a simple 3D trace plot of the
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Figure 5.10 The final 500 signals in the information genome of the market index for
calibration 51°

various permutations of encoded information byte signals for both asset (a)
and representative asset (i) and then mapping this against the evolution of
the market index. This is precisely what we have done in Figure 5.12. By
presenting our results in such a way, we are able to illustrate how the market
index actually evolves across time in response to various encoded informa-
tion bytes. We feel that this is quite a useful visualization. That said, does
Figure 5.12 represent the breakthrough we are looking for? Does it truly rep-
resent the financial market equivalent of Watson and Crick’s double-helix

16 Note the pronounced clustering of similar recommendations thanks to the pres-
ence of price inspired feedback influencing individual analyst recommendations. This
“collective” impact of feedback driving the behavior of the microstructure of the ana-
lyst community is completely sympathetic to the Complexity Theory views espoused
in Chapter 3 and indeed, reflects what we observe in the “real world” as well. We
will model the microfoundations driving such behavior on behalf of the analyst
community in greater detail in Chapter 6.
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Figure 5.12 The inner core of the informational genome for calibration 5

DNA molecule structure? We think not. For starters, there is no representation

of the building of information from byte to meme, meme to theme, theme
to overall market sentiment. Further, while definitely elegant, the proced-
ure itself is not scalable as once one expands the representation beyond two

assets, you immediately encounter a dimensionality problem in representing

your assets graphically on the horizontal x/y plane. So in short, a 3D trace
plot represents a good place to start, but by-no-means does it constitute our
final result.
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Indeed, to more accurately represent our comprehensive framework for
understanding the biological-like molecular building blocks of information,
we need to “filter” our informational inputs in some way before presenting
them graphically. There are a number of methods by which to do this ranging
from relatively simple parametric techniques — such as principle component
analysis, factor analysis, multiple correspondence analysis or even discrimin-
ant analysis — to the relatively more complex nonparametric methods - which
include k-means clustering, EM clustering, regression tree and multidimen-
sional scaling techniques. All can be designed to “filter” the informational
genome to look for those memetic strings with the strongest associative asset
price impacts. Still, we opted for a far simpler - and more intuitive — technique
that takes into consideration what investors are trying to achieve.

Using simple Bayesian trading rule analysis (albeit with a complex overlay
of adapted Evolutionary Programming techniques), we were able to detect
those memetic sequences that had the largest II upon a chosen asset — or
even the impact upon the market index itself. How was this done? By alter-
ing various permutations of contemporaneous and latent information byte
signals and applying a trading rule “filter” to this information we were able
to discern what sequences had the largest “payoff” to an investor attempt-
ing to maximize the return on their investment.!” The obvious beauty of
this approach is that it actually mimics “real world” investor behavior —
investors receive memetic signals, interpret them and then act accordingly.
Further, since our Bayesian trading rules are conditional (by definition), we
are able to introduce ancillary constraints to our investment process. Such
ancillary constraints in essence augment our algorithmic “key meme” search
and include conditions such as maximal drawdown limits, maximal consec-
utive loss, return volatility minimization, Sharpe ratio constraints, Sortino
ratio limits and so on — all of which eventually condition the evolution of the
various “structured information” trading rules attached to our key memetic
sequence search.

In short, in sympathy with our earlier cited Keynes quote, our investment
process at its simplest basically becomes a “beauty pageant” of various struc-
tured information memetic-based trading rule strategies (where at times, key
memetic sequences can also be used to identify the informational “triggers”
forecasting a switch by market participants from one preconceived invest-
ment strategy to another).’® This “switching prediction” capability of our

17 This approach toward key meme identification is not too dissimilar from the genetic
mapping algorithms used in genomics which look at various permutations of the
“reshuffling” of various bases along a genetic sequence as indicative of the proximity
of two genes along a particular chromosome. See Watson (2004) for a highly readable
introduction to this field.

18]t is important to note that our “structured information” approach is a key dif-
ferentiating feature from previous “Evolutionary Finance” implementations as briefly
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Bayesian trading rule (structured information) technique builds upon the
earlier mentioned fallibility of most investors simplistic heuristic trading
rules inevitably going wrong at varying points in time — as was identified
in our Behavioral Finance critique in Chapter 3. As we described there, an
“optimal strategy” under such circumstances is one that develops an over-
arching sequence of strategies that takes into consideration such inevitable
“failures” on behalf of the simplistic (typically static) strategies of others and
effectively preys upon their shortcomings. To do this in a computationally
efficient manner, we had to appeal to a class of nonlinear programming
technique known as “Evolutionary Programming” which will be described
in considerable detail in Chapter 7. That said, one benefit of our approach
that is useful to highlight at this early stage is that the output of our model
based investment projections effectively constitute time-series data. Ergo, we
are able to plot the evolution of the key memetic sequences along the mar-
ket’s informational genome (and the efficacy of our investment process over
time). Needless to say, we will elaborate upon this “structured information”
approach toward filtering the market’s informational genome and formulat-
ing the prediction of (and subsequent evolution of) winning trading rule
based strategies in greater detail in Chapter 7, but for now let us reiterate
that we found the Bayesian trading rule technique the best place to start in
such a process and certainly the most amenable for our purposes. Still, this
doesn't tell the reader how such a complex array of information can be effic-
aciously represented visually and why this concise visualization should be
looked upon as such a breakthrough.

Primarily, our challenge from the start has been to find the financial mar-
ket equivalent of Watson and Crick’s double-helix representation of the DNA
molecule. In short, we now believe to have found it. Just as Watson and
Crick’s representation of the DNA molecule had profound implications for
the world of science, we feel the following representation of conditional
memetic strings which have significant II in terms of asset price growth will
have a similar “big bang” effect upon the finance sphere — albeit after the
somewhat annoyingly compulsory “take-up lag” that usually accompanies
such pronouncements.

described in Chapter 3. In particular, our ability to better understand the “inner fabric”
of information — how bytes form memes, which in turn form themes and overall
market sentiment - better positions us to actually plot the emergence of winning
strategies from a preconceived strategy set. Typically both analysts and investors use
such strategies to maximize the return from their research and investments (respect-
ively). Our “structured” approach toward information better understands the true
microfoundations of this behavior and thereby differentiates us from simple “ran-
dom seeding” optimal strategy searches that have characterized past studies under
the “Evolutionary Finance” genre. We will contrast our implementation style vis-a-
vis those that have preceded us in the Evolutionary Finance field in greater detail in
Chapter 7.
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So now that we have whetted the reader’s appetite, what particular graph-
ical form have we proposed for this all-important representation of the
linkage of molecular-like financial information with asset prices? Well, we
like to think of it as a “tree-root” type of structure. Small tendrils of radial
memetic information inputs feed into the “root core” of the asset price
which through time, thanks to these information inputs, grows larger.’® The
memetic inputs are selected via a winning Bayesian conditional strategy regi-
men with the highest payoff strategy (the “strongest” memetic string) being
recorded as a tendril-like extension that has closest proximity to the “root
core” of the asset price. Conversely, those memetic strings which have been
deemed by our algorithmic process to have been less successful strategies
are located the greatest distance away from the asset price “root core.” In
turn, sub-extensions from the tendrils themselves illustrate the array of indi-
vidual information bytes feeding into any chosen memetic string. Since these
memetic-based winning strategies themselves are in a constant state of evol-
ution, the tendril feeders into the asset price informational core will alter
through time - both in their positioning and in outright composition. By
comparing these compositional and positioning changes, one is able to dis-
cern as to whether there has been a demonstrable change in the informational
drivers of the asset in question — and thus, a change in theme. Likewise, by
observing the relative proportion of “bullishness to bearishness”/“buy to sell”
recommendations in these asset price drivers, one can discern as to whether
there has been a change in overall market sentiment. Subsequently, an alter-
ing thematic/market sentiment pattern will be represented by a sequence of
observable changes in the physical structure of our designated “informational
radix.”

The true beauty of our depiction of how information comes to affect asset
prices — as represented in Figure 5.13 — is that it summarizes a lot of critical
concepts in a very concise way. By taking smaller and smaller snapshots of the
“informational radix” (as we like to refer to it) it is possible to garner more and
more information as to what is actually driving an asset’s price at a given point
in time. Moving along the structure, one can see what memetic sequences
were most important at different points in time and more importantly, how
this waxes and wanes as the asset price evolves. Comparing various 2D cross
representation snapshots has its advantages too as the “radial clustering” of
the key memetic inputs (as determined by our Bayesian conditional trading
rule technique) provides information not only as to the relative strength of
the key memetic sequences, but also details their composition as well - as
shown in Figure 5.14.

19 In this particular example we use an asset’s price as the “root core” target variable but
as we will explain in Chapter 7, the “root core” can just as easily be the performance
of a particular preconceived strategy. Indeed, one can even use moment distributions
as a root core.
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Finally, comparing various informational radix structures across differ-
ing assets allows one to immediately visualize how various assets “grow” in
response to a given informational environ (as set by your choice of the raw
information used in constructing the informational genome that is filtered
by our Bayesian trading rule technique). Such visual comparisons make the
contrasting of highly complex structured information/asset price relation-
ships relatively simple. To illustrate, we undertook yet another calibration of
our preferred model — using yet again an associative asset price framework,
but this time raising the influence of memetic cluster formation via height-
ening the externality potential (x) expression for latent information. We did
this by altering both A (the net sum of latent information enforceable at
time t) and A (the memetic externality weight placed upon latent inform-
ation) for representative asset (i) — but holding everything else constant as
per our previous calibration. The aim of this exercise was to increase the
II of latent information and to thus alter both the size and the prevalence
of memetic structures as “winning strategy” outcomes within our Bayesian
conditioned trading rule screening technique. In particular, our idea was
to create an informational radix with discernibly more extensions radiating
from its informational core simply because there would be less individual byte
(contemporaneous information) winning strategies and more latent inform-
ation (larger memetic cluster) representations as the preferred outcomes of
our memetic string filtering process.

Indeed, this was precisely the result we managed to achieve — as the fol-
lowing figure demonstrates. Simply visually comparing Figure 5.13 with
Figure 5.15 presents the reader with a dramatically different sense of the
way a given information-set is interacting with the price of two “assets.”?°
Mapping the evolution of the way memetic clusters change in positioning
and representation between these two graphical depictions across time cov-
eys to the reader how themes are emerging across varying assets. Further, the
reader is immediately informed of what information is driving these themes
to emerge, its structure, how important particular information sequences are
now (and in the past) and even how “informationally intense” a particu-
lar asset is. In short, our informational radix representation conveys to the
trained eye an immense amount of detail as to the actual fabric and structure
of information and how this interacts with the evolution of a given asset’s
price. Itis herein that we feel the greatest potential of this graphical technique
truly resides.

To conclude this chapter, we hope we have conveyed to the reader the
true beauty of our evolutionary approach toward information structure and
in particular, how the study of the biological-like molecular building blocks
of information come to influence the evolution of an asset’s price. In short,

20 We use the term “assets” in inverted commas here simply because our alternate
“assets” are effectively constructed via different calibrations of our preferred model.
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we hope we have managed to put some “flesh on the bones” (so to speak)
of the revolutionary evolutionary informational framework initially mapped
out in Chapter 4. Here in Chapter 5, we have expanded upon our over-
arching philosophy by developing a comprehensive evolutionary model of
the marketplace to give the reader some insight as to how financial mar-
kets really work. Keystone in this endeavor has been the development of
our informational radix graphical depiction of the way in which structured
information - byte to meme, meme to theme, theme to overall market
sentiment — interrelates with the growth of an asset’s price. We feel that this
particular graphical depiction not only summarizes an immense amount of
detail about informational structure to the trained eye, but it also represents a
complete watershed in thinking about the way financial market information
should be assessed.

No doubt, we feel that our “structured information” philosophy will
gradually percolate into a variety of different spheres of influence but one
important port of call before undertaking the applied interpretations of our
work will be an examination of the implications of our structured inform-
ational approach for distributional form. After all, as was illustrated in
Chapter 2, the Gaussian distributional form has constituted the central
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plank with which the traditionalist finance approach has leveraged into an
astounding array of financial engineering techniques. For our Evolutionary
Finance alternate investment philosophy to prove a worthwhile contender
to the crown, we must therefore say something about how a structured
informational approach toward the cacophony of information that besieges
investors every day influences the distribution of asset prices across time. If
we can offer a credible alternative here to “plug into” many an existing fin-
ancial engineering tool, then our labors will have proven to have been truly
worthwhile.



6

The Implications of Our Evolutionary
Perspective for Distributional Form

As we have highlighted on a number of occasions throughout this book,
distributional form is important. For starters, the ubiquitous Gaussian
distributional form underpins the entire edifice of financial engineering tech-
niques that characterize the “traditionalist” thought paradigm - a point
already expanded upon in considerable detail in Chapter 2. This distribu-
tional form does have its limitations, but as we have also mentioned, it is
insufficient to criticize something without at least attempting to offer an
alternative. Does our own unique view of Evolutionary Finance provide any
insight as to an alternative distributional form? The good news is that “yes it
does.” The even better news is that this (Game Theoretic based/informational
sequence driven) distributional form provides a fundamentally more credible
approximation of the intrinsic forces determining the distribution of asset
price movements than does the “white noise”/IID (independent and identic-
ally distributed) driven assumptions that constitute the Gaussian foundations
of the traditionalist perspective.

As we will illustrate in considerable detail in Section 6.1, it is relatively
easy to leverage the extensive Game Theoretic analysis that was provided
in Chapter 3 to provide a generalized version of a microfoundation model
for the emergence of sequence-driven “clumps” of information. This model
allows us to more plausibly describe systematic (and at times nonlinear)
jumps in asset prices as analysts embark upon different “information byte
producing strategies” that intrinsically affect the information format along
any particular segment of the market’s information genome (} ¢;). Such
“information byte producing strategies” are a natural consequence of ana-
lysts attempts to produce the various pieces of information necessary to build
a certain meme or theme. It will be demonstrated that as these pieces of
information become available to the wider market, the market itself typ-
ically reacts in a “noisy” — but nevertheless predictable — fashion. Under
such circumstances — as we mentioned in Chapter 4 — each information
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byte is heterogeneously determined not homogenously determined. This
fundamentally deterministic process is fully explained using Evolutionary
Game Theory as a microfoundation. It is not arbitrarily imposed — as has been
the case with the IID theoretical underpinning motivating the Gaussian dis-
tributional form within the traditionalist thought paradigm. The reward for
our efforts? A time dependent Evolutionary Distributional Form (EDF) that
responds to the ebb and flow of analyst provided information.

Further, an additional benefit of our labors in motivating our EDF is that we
are able to provide an intrinsically better interpretation of the fundamental
causes of market “events.” Such “events” are an endemic characteristic of fin-
ancial markets that have (unfortunately) been so poorly described under the
auspices of traditionalist theory. The reason for our comparative advantage in
this particular field is that we use a Ewens distribution to describe the cluster-
ing of analysts into various pure strategy following groupings. It is this “herd
like” clustering behavior that at times promotes the emergence of kurtosis in
asset prices — hence our model’s natural affinity with describing the presence
of market “events.” The bottom line here is that in Section 6.1 we will put
forward a stylized interpretation of the microfoundations of financial mar-
kets which we feel will be inherently more appealing to both theorists and
practitioners alike. This approach transcends the present (Gaussian directed)
industry standard. Such are the motivations behind our EDE.

Following on from this analysis, in Section 6.2 we will focus on the particu-
lar Game Theoretic strategies that information producing analysts can adopt.
We do this by calibrating our model and observing its behavior. In particular,
we use the generalized framework developed in Section 6.1 to describe the
“informational leverage” that certain analysts can get from either an adroit
positioning of a particular information byte, working cooperatively, or altern-
ately utilizing their stature within the market. By influencing both the flow
and format of information in such a way, analysts can generate exceptional
return for themselves and in so doing, demonstrably affect the distributional
form of asset prices. Such informational leveraging/price-directed strategies
manifest as a natural consequence of the interaction between the various
members of the analyst community and the wider financial market. Just
as certain evolutionary strategies appear to be an endemic feature of any
ecology — even artificial ecologies generated within a computer program - so
too does it appear that certain analyst “information leveraging” strategies
are an endemic feature within the overall financial market ecology.! We
will focus on but a few of such strategies here but we feel we will leave the
reader with a general flavor of how the analyst/market strategy dynamic is
integral in explaining some of the more broad-ranging of observed market

IIndeed, the identification of such strategies within the confines of a purpose
built computer program has been attributed to the earlier mentioned “artificial life”
computing pioneer Thomas Ray.
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phenomena. Yet again, we believe that such analysis will be conceptually
more appealing to both theorists and practitioners alike. Especially when
compared to the sterile world promised by a slavish adherence to the Gaussian
distributional form.

Finally, in Section 6.3 we illustrate the way in which our deterministic
foundation/informational sequence driven EDF alters prevailing financial
engineering techniques. We will do this by demonstrating how standard
financial engineering precepts such as mean-variance optimization, Black-
Scholes option pricing and even Value-at-Risk analysis alters under our new
interpretation of the linkage between analyst provided information and asset
prices. As promised in the introduction to this book, virtually no stone of
(traditionalist-based) financial engineering “best practice” is left unturned
when it comes to implementing our pioneering new evolutionary approach
toward information in financial markets. Given space limitations, we aim
to highlight but a few of the more important implications here. That said,
as was the objective in Section 6.2, our aim is to leave the reader with an
indelible impression of just how far reaching our over-arching philosophy
can be. So now, onto the deterministic Game Theoretic microfoundations of
our EDFE.

6.1 Foundations for an evolutionary approach
toward distributional form

To understand the macro, one must at first understand the micro. Physicists
have long recognized this problem and indeed have been wrestling for some
years with the conundrum of how to unify the principle of general relativ-
ity with quantum mechanics.? Interestingly, the same fundamental “micro
meets macro” principle applies to finance. That is, to truly understand
“macro” aspects such as the distributional form of asset prices, one must
at first have at hand a firm grasp of the underlying (micro) principles driving
the dynamics of such phenomena. This is where the traditionalist thought
paradigm has let us down immeasurably. To argue that market information
(and therefore asset price movement) is too “noisy” to understand is, we feel,
an intellectual dead-end. Furthermore, in trying to defend what was at first an
excusable simplifying assumption of IID information arrival (in promoting
the emergence of a Gaussian distributional form) with ever more elaborate
tautologies of “irrational active investors” and “noise traders,” is we feel a
regressive step for the industry as a whole. We ask, why devote so much time
and effort in defending an assumption that apparently was only inserted

2 In fact, such was the quest for Einstein during the greater part of his latter life. Recent
developments in String Theory appear to provide a promising foundation for the devel-
opment of a singular unifying “theory of everything” — but it is still early days yet. For
a very readable exposition on these latest developments, refer to Greene (2000).



164 Evolutionary Finance

in the first place because of the technological constraints imposed by the
limitations of 1950s and 1960s computing power in wrestling with com-
plex nonlinear problems? Isn't it time to move on rather than vainly trying
to defend the status-quo? Certainly we — along with other adherents to the
various “new view” challenges described in Chapter 3 - feel this to be the case.

So if we are to be the agents for change — especially when it comes to under-
standing the microfoundation drivers of asset price distributional form -
where should we start? We feel Game Theory provides a useful framework
for modeling the interactions between the various members of the analyst
community - especially in terms of the quantum and format of the inform-
ation bytes they produce. In essence, Game Theory provides a convenient
mechanism to put some additional “flesh on the bones” of the types of ana-
lyst interaction modeled in the latter stages of Chapter 5. After all, analysts
no matter of what ilk, use strategies to guide their behavior and motivate
their ideas. The obvious implication of this is that such strategies intrinsic-
ally affect the format of the information bytes that analysts produce. Such
statements are entirely consistent with our discussion in Chapter 4 as to how
we as humans typically interpret information. In short, analysts use various
preconceived strategy “filters” to assist them in encoding and categorizing
the “data deluge” that besieges the market each and every day. Subsequently,
itis possible to categorize analysts into various “warring tribes” in accordance
with their preferred strategy filter — fundamental, technical or economic. By
doing so, we are able to build up an “ecology” of analyst types within the
marketplace.?

Consequently, it is through the “strategy conduit” that we will formalize
the Game Theoretic microfoundations underlying our evolutionary model
of analyst (strategy directed) behavior in determining the actual format of
information bytes along any given segment of the market’s information
genome () ¢p). Assuming a one-to-one linkage between the format of such
information bytes and asset prices (or, in the case of memetic information,
to allow for nonlinearities between information format and price to emerge)
we can then use the strategy based principles of Game Theory as a basis for
explaining some of the more interesting aspects of analyst inspired move-
ments in asset prices and through this, distributional form. So how best

3 The obvious flip-side to this is that investors use similar (if not identical) strategies to
implement their investment ideas. Ultimately, these two facets of strategic decision-
making are interrelated — analysts quite often are investors and investors quite often
are analysts. As a consequence, the two sets of strategies — information production and
actual trading — have a tendency to become invariably intertwined. What differentiates
the two activities in the minds of most people is that sometimes the “analyst” role is
outsourced and therefore they only indirectly benefit from the market generated excess
return that their ideas generate — as detailed in Figure 2.3 and modeled explicitly in
Chapter 5. As will be seen in Chapter 7, we argue investors and analysts are always the
“two sides of the same coin” and model our evolutionary strategy search accordingly.
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Figure 6.1 An extensive form game of analyst information producing behavior —
independent or interdependent?

to implement a Game Theoretic framework within such a context? First,
let us begin by way of a visual representation of what we are trying to
achieve (Figure 6.1). Here we summarize the basic conceptual Game Theoretic
underpinnings of our view vis-a-vis the traditionalist line of thought.*

So how to formalize the above schematic into a system of equations? For
starters, there is little point in attempting to model the behavior of each

4 Interestingly, as can be readily seen in Figure 6.1, our Game Theoretic framework is
amenable to the presence of both interdependent and independent information. For
“independent information” in our stylized game you simply assume complete entropy
between each sequential ¢ to £+ 1 step of the game. One consequence of this adaptabil-
ity of our generalized framework is that we are able to describe the traditionalist model
as a “special case” of our own. This is an extremely useful perspective when interpret-
ing — as detailed in Chapter 2 - the apparent waxing and waning of support that the
various forms of empirical EMH test have given to the traditionalist line of reasoning.
For example, if the market sometimes behaves as though information is independ-
ent, it is because there is no attempt by analysts (over the specified timeframe of the
empirical observation) to on average strategically position their information bytes in
a manner that takes into account the actions of other market participants. In other
words, information bytes are primarily of a singular (2) form. However, if analysts
start to think strategically, or there is the publication of an information byte that has
significant externality potential (x), then the analyst community may start to produce
interdependent information. In this case, information bytes begin to take on a memetic
form (M). Under our framework, both such interdependent and independent inform-
ational regimens can happily coexist — its simply a matter of distinguishing between
the memetic (M) and singular (E) informational format of the various information
bytes that constitute the market’s information genome (}_ ¢;) over the time of refer-
ence for any particular empirical test. The beauty of such an approach is that it enables
us to thereby form an over-arching umbrella across the various empirical EMH studies
outlined in Table 2.1 and to explain the alternate outcomes simply via reference to
the independence or interdependence of information bytes produced by analysts at a
particular point in time along a certain market’s information genome (3" ¢y).
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and every information producing analyst along the near infinite sequence of
our extensive form game that represents the market’s information genome
3" ¢p). Why? Well, in true evolutionary game fashion, there is no guaranteed
continuity between the individual analysts represented at each f to t + 1 step
of the game — no matter where t happens to be specified. Rather, different
analysts will be entering and exiting the informational sequence continuum
at different points in time.®> This sequential “resampling” of individual ana-
lysts into and out of the pool of representative analyst talent at each stage of
the game implies that no “reputations” can be built for individual players —
at least at the elementary level of the sequential t to ¢ + 1 iterative steps of
information byte production.b

So if the analysts in our game are continually changing, how do we model
their behavior? The answer is simple — via the payoff function. The spe-
cification of the payoff function is the one continuity along our extensive
form game that constitutes the market’s information genome (}_ ¢;). Con-
sequently, it is here that our attentions should be directed in building a
generalized system of equations for the above schemata. By treating each
step along our extensive form game as a distinct (time dimensioned) two
person game where each player’s actions are motivated by the payoff func-
tion, we are able to formalize our Game Theoretic microfoundation structure
according to the following generalized form.

A generalized Evolutionary Game format for the
market’s information genome’

Let us primarily concentrate upon specifying a pure strategy generalized solu-
tion. Assuming two analysts — one at time ¢ and another at time ¢t + 1 — have
the choice of St = (sty, ..., st,) pure information producing strategies which
condition the format of the information bytes they produce, then the pay-
off to analyst 1 playing sty € St is wpq While the payoff to analyst 2 playing

5 Such an assumption is entirely consistent with our theoretical model presented in
Chapter 5 as different analysts were assumed to produce different information bytes —
especially “new theme” generating information bytes over which they possess intellec-
tual monopoly rights. Further, consistent with the above, in Chapter 5 no assumption
was made as to the order in which each analyst produces each information byte —
rather, the order of each information byte’s arrival itself was considered as important.
6 Rather, as will be illuminated in Section 6.2, reputations are built on the basis of
the format of the analyst’s information byte itself — not its positioning. In particu-
lar, consistent with our discussion in Chapter 5, the publication by an analyst of an
information byte that possesses extremely high externality potential (x) may result in
the information producing analyst in question being anointed by the wider market
as a “dominant player” in the sense that they become the generator of a new theme.
Such a “reputation” will ultimately have its consequences — as will be displayed in
Section 6.2.

7The analysis presented in this section draws heavily upon the foundations for
Evolutionary Games outlined in Gintis (2000).
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sty € St is myp. Herein resides the genesis of our “warring tribe” analogy that
was motivated in our discussion of artificial models of the marketplace in
Chapter 3. While we only assume two types of strategy being pursued at the
chosen t to t + 1 point in our extensive form game (strategies B and Y),
our model is sufficiently generalized to allow for a plethora of alternate pure
strategy forms. Either B or 4 could for example be —a technical-based strategy,
a fundamental-based strategy, an economic-based strategy and so on. We
could even move down into the sub-stratum of each strategy category and
specify the actual type of pure strategy — for example, a Fibonacci trading
rule strategy. Subsequently, our model is sufficiently generalized to allow for
an entire ecology of different pure strategy “types” of analyst to manifest.
Ultimately, it is these differences in pure strategy that govern the clustering
of analysts into various “warring tribes” and that sets in place the necessary
conditions for determining the format of the information byte that a par-
ticular “tribal member” will produce when they enter the information byte
continuum. Thereby, it is via this process that the format of the market’s
information genome (}_ ¢y) will be determined.

Importantly for our purposes, we also make the distinction between
“bullish” (“B” producing) and “bearish” (“S” producing) pure strategy types
within each sub-category of our defined analyst “species” that are part of our
overall market ecology. The reason for doing so will become all too obvious
a little later when we define the conditions for the emergence of an Evolu-
tionary Stable Strategy (ESS) equilibrium and observe the analyst “strategy
switching behavior” dynamics of our Evolutionary Game. Suffice to say now,
it is important that we draw to the reader’s attention to this distinction at the
early stages of laying down the generalized format for our microfoundations
of analyst behavior.

Furthermore, it is also important to note that we assume our game is sym-
metric in form - that is, the game is not only symmetric in terms of payoffs
but also symmetric in terms of information producing strategies. This implies
that analysts can’t condition their pure information producing strategy on
whether they are Player 1 or Player 2 —an “ordering issue” that we will address
in detail a little later in this chapter. Given that this is the case, we can use
G to denote a symmetric game matrix at any given representative stage of
the game with the vector of Player 1 payoffs within a hypothetically large
population of analysts being represented by [l = (wpy)] — where should more
than two players be involved, the variable 4 would represent the strategy
choices of the remainder of the analyst group.

Now we add the element of time in the sense that in each periodt =1, 2, ...
we will assume for simplicity that analysts randomly enter the information
producing continuum and produce an information byte (¢) that ultimately

8 Note the notation = for the analysts payoff has been chosen intentionally as it
reconciles directly with the profit () notation in the previous chapter.
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contributes to the overall market’s information genome (}_ ¢y). Remember,
we assume each analyst is of a pure information producing strategy type.
Subsequently, if the population of analysts following a particular strategy is
z at a given point in time, then the analyst population at this time can be
represented as Z = z;st; + - - - + z,st,,.° Under these circumstances, the payoff
to an analyst following pure strategy b at the selected time £ is

n

Tpz = Zﬂﬁqu- (6.1)

4=1

Now suppose we replace fraction » > O of the analyst population with a
“mutant” pure strategy following analyst of type Y (this could, for example,
be a subset of a bullish technical based strategy, a subset of a bearish fun-
damental based strategy and so on). Still, irrespective of the nature of the
“invading mutants” pure strategy, the new state of the analyst population
can be specified as

b=(01—-w)Z+wsty (6.2)
and the payoff for the randomly chosen nonmutant analyst thus becomes

7z = (1 —w)nzz + w77y (6.3)
while the payoff for the mutant strategy following analyst is

yp = (1 —©)71yz + 0 Tyy. (6.4)

In terms of defining the Evolutionary Stable Strategy, the mutant strategy
following analyst can invade the analyst population if Z=b and (for
sufficiently small » > 0) when

Typ > NT7h. (65)

91t is important to highlight that the number of analysts notation is commensurate
with the number of informational investors (Z) specified in Chapter 5 — simply because
as we have earlier identified, both are effectively the “different sides of the same coin.”
On the one hand, analysts are “information producers” within our general equilibrium
framework described in Chapter 5, on the other hand, they are also “information con-
sumers” (investors). This dual-faceted nature of analyst behavior is entirely consistent
with the multiple facets of National Income identities which identify individuals as
both producers and investors.



Evolutionary Perspective for Distributional Form 169

Ergo, as consistent with our definition of an ESS given in Chapter 3, Z is
an ESS population of strategies if it cannot be invaded by a mutant strategy
following analyst.!° Interestingly, this relatively simple result lays the found-
ations for the entire pattern of our market information genome (3 ¢;). How
is this the case? Well, it basically provides the generalized solution for the
format of the stream of information bytes produced by a diverse ecology of
pure strategy following analysts.

Assuming (as do the traditionalists in their often touted “fair-game” model
of market behavior — outlined in Chapter 2) that there is a direct linkage
between market information and price, we can now describe in generalized
terms how the format of a particular pure strategy motivated information
byte affects asset pricing within a relatively simple (deterministic) Game
Theoretic process.!! This is simply because the respective payoffs from follow-
ing different pure strategies will affect the numbers of analysts represented
within each separate pure strategy following faction (or “warring tribe”)
of our market ecology. It is the total weight of numbers in these relative
analyst groupings that determines the most likely outcome for the format
of an information byte — given that analysts are assumed to be randomly
drawn from the overall analyst population Z. Furthermore, since we have
made the distinction between “Bullish” and “Bearish” subcategories of each
pure strategy grouping, we are able to generalize swings in overall market
sentiment (H) by analyst “herding” into different strategy classifications.

Consequently, in following the lead we established in Chapter 5 and con-
tinuing to assume a one-to-one linkage between the format of an information
byte and asset prices for all singular information (E) — and a scaled net
memetic externality weight in accordance with latent (A) and contempor-
aneous (2) effects for all memetic information (M) — we thus have in place a
significant portion of the necessary criteria for describing the microfounda-
tions of an EDF. This is done by simply drawing a direct linkage between the
predominance of various “clusters” of pure strategy following analysts, the
format of the information they produce and the (at times nonlinear) impact
that this has upon asset pricing.

So far so good you might say, but how does the above generalized form
for an Evolutionary Game across our ecology of information producing ana-
lysts (and its implied impact for the pattern of asset pricing behavior) relate
back to the series of case study examples presented in Chapter 5 — primarily
those presented in Section 5.2? To illustrate this progression from our gen-
eralized format Evolutionary Game into the considerably more “macro” in

10 Notice yet again we refer to Z as being a “population of strategies” as we remind the
reader there is a one-to-one mapping between individual analysts and pure strategies.
1 Ultimately this generalized format takes into account the various nonlinear price
effects associated with the publication of information bytes that are memetic (M)
in form.
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perspective dynamic system representation of analyst interaction presented
in Chapter 5, we must yet again appeal to the discipline of a generalized
form - but this time, for identifying the dynamics of the Evolutionary Game
itself.

Our Evolutionary Game's dynamics

As consistent with the earlier, we start by considering an Evolutionary
Game where each analyst follows one of n pure strategies and that the ¢
to t + 1 sequences of the game are repeated over periods t = 1,2,....
Likewise, we let z be the fraction of analysts adhering to pure strategy
st in period t and that the payoff to strategy sty is mp(z') where
Z = (21,...,2Zy).

However, in the spirit of our earlier discussion we now explicitly allow for
the possibility of a “bull/bear” dynamic to emerge in the sense that the pop-
ulation Z of pure strategy following analysts can be skewed toward either a
“bullish” or “bearish” collective mindset. Such swings are entirely consistent
with our earlier described process of meme and theme building. Further-
more, we allow for the degree of such a skew to alter across time. To do this
we assume that in every time period dt each analyst with probability Jbdt > 0
learns of the payoff of another randomly chosen analyst and changes their
pure strategy if they perceive the payoff of the alternate strategy to be higher.
That said, we also assume that the information concerning the difference
between the two strategies is imperfect, so the larger the difference between
payoffs, the more likely it is that strategy switching behavior will manifest.
This can be formalized as follows

¢ t t t
b (wf — nf), forml > m,

Pl‘%‘{ = (66)

t t
0, for m§ < my,

which, in effect, denotes the probability (Prfy,) that an analyst using strategy
sty (for instance, a “bullish” GARP strategy) will shift to strategy sty (for
instance, a “bearish” DDM strategy) at time ¢t and where the transition factor
for analyst switching behavior (b) is sufficiently small so that Prgy < 1 for all
B, Y. As we will demonstrate a little later, the degree of this strategy switch-
ing behavior can be influenced by the presence of externality potential (x)
promoting the emergence of various pure strategy following “clusters” of like-
minded analysts who, in turn, contribute to the process of meme and theme
formation. In other words, the degree of externality potential (x) affects the
impact of the value of Ib upon analyst switching behavior — but more on
this later.
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For the moment, let us identify that under such conditions the expected
fraction of the analyst population using strategy zp in period t + dt is

n B
Ex (25%) =74 —Tbdtzl, > 24bb (wh — 7h) + > IbdtzlyZ4Hb (wh, — x4)

Y=bH+1 g=1

— 74— ThdtziFb (v — 7'), 6.7)

where 7t = #fz} + ... + 7}z!, represents the average return for the analyst
population.

Now it is just a simple matter of subtracting z}, from both sides, dividing
by dt and taking the limit as dt — O to yield the following dynamic equation
governing the strategy switching pattern exhibited by the analyst community

zk = Jbtbz (nf — ') forB=1,...,n. (6.8)

A cursory examination of Equation (6.8) in comparison with the types of
dynamic equations we have illustrated via our case studies in Section 5.2
demonstrates a distinct similarity in structure (but now we have the added
benefit of actually having formalized the microfoundations for the payoffs
that “strategy switching” analysts will achieve).

Subsequently, we now know not just the generalized format of the various
information bytes that ultimately come to constitute the market’s inform-
ation genome (3 ¢j), but we also know the preconditions that motivate
changes in analysts pure strategy following behavior. Such microfounda-
tions enable us to drill down even more deeply into the forces constituting
a change in the actual fabric of market information given that we can now
explicitly identify the reasons why analysts switch from one pure strategy
following “cluster” to another. In so doing, we now have a much better appre-
ciation of the forces governing meme, theme and overall market sentiment
formation.

Indeed, as we mentioned earlier, such switching behavior appears to be
motivated primarily by the presence of externality potential (x) bearing
information bytes influencing the perceived payoff for certain analysts to
switch strategies. Consistent with our terminology presented in Chapter 5,
this externality potential (x) can be either contemporaneous (£2) or latent (A)
in form. We will focus upon these aspects of meme, theme and overall mar-
ket sentiment formation — along with their associated nonlinear asset price
impacts — in considerably more detail a little later in this chapter. Suffice
to say now, given the above, we now have in place a significant portion of
our generalized model for the microfoundation determinants of the fabric of
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the market’s information genome (3 ¢;), and through this, asset prices and
distributional form.

The next step in our study of the underlying drivers of analyst decision-
making is to introduce the potential for private information. Obviously, the
analyst who produces a particular information byte will be privy to such
information well in advance of others. This “lead information” can ultimately
affect the analyst decision-making process within an extensive form game
(this is the “ordering issue” that we drew attention to in the first subsection
within this chapter). Subsequently, it is incumbent upon us to introduce
some form of generalized formal structure for such a (truly Bayesian) premise
within our deterministic Game Theoretic microfoundations of our EDF.

Introducing private information and the Bayesian form'?

To generalize the games between analysts who possess private information we
need to use the concept of “perfect Nash equilibrium in behavioral strategies”
in place of standard “Nash equilibrium.” What precisely does this new ter-
minology mean? Well, for starters a “behavioral strategy” st for an analyst
following pure strategy B in our extensive form game G is a probability
distribution Pr over the analyst’s market-wide information set < I. Like-
wise, we use the term “behavioral strategy profile” to represent the actual
choice of behavioral strategy made by each analyst. How these concepts
relate to the actual concept of Nash equilibrium will become obvious in the
following paragraphs.

For example, using the earlier definitions, we can say the behavioral
strategy set St = (sty, ..., St;) is a Nash equilibrium in behavioral strategies
if for each analyst, sty is the best response to st_gp. Unfortunately, while giv-
ing us the “solution” to a private information game, this statement provides
little to no insight as to the game itself. To circumvent this issue, we must
analyze the “out of equilibrium” behavior of the Game Theoretic system.

12 private information games are ubiquitous in the Game Theoretic literature. A good
example of such a game in the applied sense is the often cited “Cobweb” phenomenon —
see Chiang (1984) for details. Why the link between “Cobwebs” and private informa-
tion? Private information games (by default) involve some sort of lag structure in the
response function of the game’s participants and the Cobweb dynamic explores the
cycles that typically manifest as a consequence of this behavior. Likewise, the presence
of private information (and the implied lagged response of a game’s alternate players
that goes hand-in-glove with such a premise) also provides a convenient backdrop for
the formalization of such informational principles like “information cascades” and
“herding” - both of which have been discussed in Chapters 4 and S (respectively). For
a comprehensive overview of the herding/information cascade consequences of such
games, see Chamely (2004). As a final point, it is interesting that in this discussion
Chamely makes the definitional distinction between what precisely constitutes “herd-
ing” and what actually constitutes an “information cascade” — a definitional difference
often overlooked in much of the present literature.
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For example, given the Bayesian foundations of our model it is possible to
identify what is known as the “local best response” during each iteration of
the game. This, in true Bayesian form, tells us the best response for an analyst
following pure strategy b in making a decision at informational node [I €
of the game.

To elaborate further, at informational node /1 € the expected payoff from
using st given st_ is

o (sl st) = ) Pri[l, tist, st_lmn(t), (6.9)

teT

where T is the set of terminal nodes, 75(t) is the final payoff to an analyst fol-
lowing pure strategy B at terminal node t € T and Pr[/], t|st] is the probability
of reaching a particular point in the game t from /1 given (st). Subsequently, if
Pr[I|st_,]is the probability of being at node [, given that an analyst follow-
ing pure strategy b is attempting to choose the correct path when confronted
with , and that (st) is being played, then such an analyst should choose st so
as to maximize

p(stist_,) = Y Pr([l,st_1) _ Pr(, t|st, st_lmp(t) (6.10)

e teT
and Pr[]1]] is given by the Bayesian updating formula'3

Pr[[T]st_]

Pr[Hl/St—] = Pr[lSt ] .

(6.11)

This gives a much better description of the game as it is sequentially played by
our ecology of information producing analysts in true Bayesian form. Why?
Well Equations (6.10) and (6.11) identify that if (St) is a Nash equilibrium in
our extensive form game G and if is the information set reached at each stage
of the game with positive probability Pr, then st is the local best response for
each analyst following pure strategy B to respond to st_. We thus are able
to map out each sequential step of our extensive form game under private
information conditions.

So now that we have sufficiently generalized the Game Theoretic interac-
tion between the various members of our ecology of information producing
analysts (even under private information conditions) for each sequential step
along our extensive form game that constitutes the formation of the mar-
ket’s information genome (3 ¢;), does this necessarily mean that our task
of formalizing the deterministic microfoundations of our EDF is complete?

13 Note that when Pr[|st_] = O then Equation (6.11) does not make any sense and
Pr[[|, st_] would need to be defined arbitrarily.
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Unfortunately, the answer is “No.” While we do have in place a sufficiently
detailed model of the microfoundations that determine the format of each
information byte that analysts produce, we still have yet to come to grips
with ascertaining some form of generalization as to the impact that this
information will have (via asset pricing) upon distributional form.

To do this we could appeal to a number of alternate methodologies, how-
ever we have chosen what is known as a “Ewens distribution” — which not
surprisingly, given our evolutionary foundations, arises from the genetics
literature — as a basis for our EDFE.'* Why this particular distribution? Well,
quite simply because a Ewens distribution appears to be a natural extension
of the type of analysis we have presented in the preceding subsections. This
is because it describes the innate tendency of its underlying components to
“cluster.” In our case, such micro-component “clustering” refers to analysts
crowding into various pure strategy groupings as they gravitate toward where
they purview the payoffs to be higher. This, in turn, affects the actual format
of the market’s information genome (3 ¢) and gives rise to certain memes,
themes and causes overall swings in market sentiment to emerge. As will
be illustrated in the following subsection, this endemic herding behavior
on behalf of analysts — and its concurrent “knock-on” effects regarding the
actual fabric of market information - can readily be explained via a conveni-
ent marriage between our earlier discussed externality potential (x) and the

14 For example, an alternate distributional form amenable to our purposes is that pro-
posed by Vaga (1991). In particular, Vaga developed a time-variant distributional form
based upon how individuals interpret new information as it arrives. In particular, Vaga
leveraged the Theory of Social Imitation in discerning the impact of herding on return
distributions. Vaga used the following density function

_ T [Kpy)
= ' 2./ {7d }i|
f@=cQ@ exp[ 12 L QYY) v

where f(q) = probability of annualized return gq; K(q) = sinh(kq + h) — 2q cos h(kq +
h); Q(q) = 1/n[cos h(kq + h) — 2q sin h(kq + h)]; n=number of degrees of freedom; k =
degree of crowd behavior; h = fundamental bias; and

B vz T (K@)
1= 1 2/ {761 ”d .
c _1/2Q @ eXp[ L2 law q

Atk = 1.8 and h = 0 this distributional form approximates to the normal distribution.
At k > O chaotic behavior eventuates and by altering the value of h, this “random
looking” distributional form will be either skewed positively or negatively. See Peters
(1996) for more details as to simulating the Vaga distribution. That said, another dis-
tributional form possibility that we have considered in our quest is the ubiquitous
“Turning Distribution.” Here the mathematician Alan Turning (pioneer of some of the
fundamental concepts underlying modern day computers) identified that stripe and
spot markings in the natural world emerge as a simple “activator/inhibitor” extension
of the relatively simple uniform distribution. See Kawczynski and Legawiec (2001) for
a recent appraisal of this concept.
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clustering processes motivated under a Ewens distribution. So now, over to
the basics of this particular distributional form itself.

Formalizing our (deterministic) Game Theoretics into an Evolutionary
Distributional Form using Ewens distribution as a guide

As highlighted earlier, the Ewens distribution appears to be a natural exten-
sion of the generalized form microfoundations that have been presented in
the preceding subsections. Why? Well, the Ewens distribution dates back to
the pioneering work done by Ewens (1972, 1979) in describing clustering
processes in the biological/genetics realm. Furthermore, recent extensions
provided by Aoki (2000, 2002) have popularized the notion in the finance/
economics arena. The Game Theoretic analysis outlined in the preceding
pages hinges largely upon the precept that analysts “cluster” into various
pure strategy following groupings as they form an overall market “ecology.”
Dividing these clusters into various fundamentalist, technician, econometri-
cian based sub-stratum allows us to effectively define the numerous factions
of the “warring tribe” analogy of an artificial model of the marketplace that
we initially motivated in Chapter 3. Furthermore, by dividing each of these
strategy sub-stratum into distinct “bull” and “bear” classifications, we are able
to model the payoff-driven swings in the analyst population from either a
“bullish” or “bearish” pure strategy following mindset. Such shifts en masse by
the analyst community toward either one of these binary classifications con-
stitute swings in overall market sentiment - as outlined in Chapter 4. Indeed,
such cluster based skewing in the collective mindset of the analyst popula-
tion (which in effect, represents cluster based swings in the distributional
form of analyst opinions) is argued to have a commensurate impact upon
price activity through a “fair-game” type of informational linkage between
market information and asset prices. So to summarize, the Ewens “cluster-
orientated” distribution has some nice features which sit well with the Game
Theoretic microfoundations outlined so far.

This raises the obvious question — how to generate the Ewens distribution
from the analysis that has been presented to date? Appealing to first prin-
ciples, let us start by assuming there is potentially a large number (St) of
types of analysts that constitute our market ecology.!® As stated earlier, these
may be chartists, fundamentalists, economists — even various sub-stratum
within these classifications — but importantly each separate sub-stratum is
divided up into “bullish” and “bearish” camps. Next, following Aoki (2002),
we present a stylized model for the entry and exit into these various analyst
sub groupings where for simplicity, we will concentrate upon the transitions
between a particular pure strategy following group of “bearish” analysts (1)

15 Note that the number of types of analyst within our market ecology is commensurate
to the net sum of strategy choices St — as consistent with our earlier discussion.
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into and out of the remainder of the overall analyst market ecology (X).
Under such conditions

Entry, = xx + IOx, (6.12)

EXitM = H]/]Z[/I, (613)

Transitiony[ = I_bI/I)I(ZI/I (Xx + IO)](), (614)
where

oy = by for all U, K pairs, H,K=1,2,...,S5t,

X, is the externality potential attributable to a given strategy (e.g., 1); and z
is the number of analysts adhering to a particular pure strategy.

Equation (6.12) refers to the entry rate into our market ecology of analysts
pursuing strategies (OK) which are other than our pre-specified bearish pure
strategy (1). Likewise, Equation (6.13) describes the departure rate from such
an ecology by analysts pursuing the pre-specified bearish pure strategy (I1).
Importantly, Equation (6.14) refers to the transition by analysts changing
between these representative strategy groupings — which in part reflects an
externality potential (x) driven conversion factor x and an additional factor
IOy that reflects the natural proclivity for analysts to be non (1) upon entry.
Itis here that one of the serendipitous beauties of the Game Theoretic analysis
we have presented in the preceding subsections and the Ewens distribution
manifests. Think of it in this way, if there has been a “theme forming” inform-
ation byte published in the past that possesses extremely high externality
potential (x), then it could be exerting an overarching influence upon the
decision by a particular analyst to switch strategies well beyond the given
point in time in which the particular information byte is published. Such
demarcations are consistent with our earlier discussed contemporaneous (£2)
and latent (A) aspects of externality potential as identified in Chapter 5.

In other words, the payoff for switching out of a particular strategy (1) is
contingent upon the net sum of the externality potential (x) “pull” exhibited
across the array of alternate strategies (OK) at any given point in time, so that

zy = [ (mn) = f(xx) = [ (bx). (6.15)

Indeed, it is through this equation that we achieve the innate potential of
our Game Theoretic microfoundations for analysts to cluster into various
strategies, for memes and then themes to emerge in a diffusion-like manner,
and for overall swings in bull/bear market sentiment to appear. Why? Well,
as stated earlier, externality potential (x) exerts a “gravitational pull” alluring
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analysts to switch strategies — of which our chosen “pure strategy bearish
analyst grouping (M) switch into the potential array (OK)” represents but one
generalized form.!¢

That said, what is also readily apparent from the above is that the net
balance of externality potential (x) applicable to a particular pure strategy (for
instance, 1) relative to other pure strategies (for instance, JX) will constantly
be in a state of flux. Why is this the case? Given that there is a continuous
stream of information bytes being produced - a fact we established in our
general equilibrium framework developed in Chapter 5 - and the fact that
some of these information bytes will be “externality potential (x) bearing”
implies that the payoff function for adhering to a particular pure strategy will
be constantly changing as well. This is evidenced by the presence of a strategy
specific transition coefficient b in Equation (6.15). This transition coefficient
ultimately relates back to our earlier discussed transition payoff specification
for analyst switching behavior represented in Equation (6.6). What all of this
implies is that we have in place the necessary microfoundations for a model
of endemic analyst herding — the relative degrees of which will be determined
by the power of externality potential (x) attributable to a particular strategy
relative to all other strategies within our overall market ecology — as defined
by the strategy set St.

Given these conditions, it is now possible to model the evolution of both
(M) and (K) switching behavior under our “externality potential (x) driven
analyst ecology clustering model” as a Markov process whose steady-state
distribution is described as

St
@) = [ [ u@w, (6.16)
n=1
where
T(zu) = (1 — ¢) ( ~fOu ) (—c)™,
Zn
and
o= 1
u= H)M'

16 In this respect, Equation (6.15) replicates our extensive form game strategy switching
condition - as expressed in Equation (6.6). The difference now however is that we place
such switching behavior within a distributional form context. We will elaborate upon
this in more detail a little later in this chapter.
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Assuming for simplicity that our arbitrary constant ¢; = ¢ for all Y, then
the joint probability distribution is defined as

-1 St
_( —2XtOx —1Ou
(z) = ( ; I1 o) (6.17)
n=1
Introducing the strategy partition vector St = (sty, ..., st,) where st, repres-

ents the number of pure strategy groupings within our ecology of analysts
containing exactly z participants implies

> sty =st, < Z. (6.18)
b

We can thus use this strategy partitioning vector (and adding the sim-
plification assumption that IO, = IO for all M) to enable us to express
Equation (6.17) as

-1 St sty
T(2) =( _S;IO ) ]‘[( _II/?” ) ) (6.19)
n=1

To turn the above into a formal distributional form, let us assume St can
become very large and in so doing potentially incorporate a near-infinite
range of analyst types within our market ecology of pure strategy following
analyst groupings. Next, we keep the innate tendency to cluster into smaller
groupings (IO) very small so that the product of StIO approaches a finite
positive constant (E. Now suppose there are St!/st;!st,! ... st,!(St —z)! different
ways of expressing our strategy partition vector, then it is possible to describe
Equation (6.19) as

-G , St O\
HZ(St)z( z >(_1)stllstzz...stz!(St—z)!1;[<1/1) : (6.20)

Since [St!/(St — 2)!] x FO* approaches (E* in the limit of Z becoming infin-
ite and O approaching zero, it is possible to express Equation (6.20) in the
standard Ewens distribution form

zZ

z! E\™ 1
Hz<st>:@[z]]‘[<i> ot (6.21)
n=1

The beauty of the above is that it is described by the single parameter (E
that in turn, is motivated by our externality potential (x). Smaller values of
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& tend to produce a few large clusters of analyst pure strategy groupings
(and the market displays distinct kurtosis type behavior) while larger values
of (E tend to produce a large number of smaller clusters (and the market
more resembles a Strong EMH type of outcome). Indeed, as (E — oo and
analysts (by definition) become near independent - as each analyst can be
regarded as a separate subcategory pure strategy follower — then the stream of
information bytes comes more to resemble the IID format “white noise” tradi-
tionalist assumption.!” To contrast, when (E — 0 the pattern of information
byte production is more consistent with analysts displaying a high degree
of interdependency.

Importantly, the impact of (E itself is the converse of our externality poten-
tial (x). This is because, as mentioned earlier, externality potential (x) has the
effect of binding the distribution of analyst pure strategy groupings together.
Higher levels of the variable KO however — which is the natural proclivity
for analysts to want to join a particular pure strategy grouping irrespective
of externality potential (x) — has the effect of tearing such larger groupings
apart. So it is this relative balance between externality potential (x) and IO
that ultimately determines the order of magnitude of the analyst clustering
coefficient (E.

Subsequently, the fact that the Ewens distribution represented in
Equation (6.21) hinges upon a singular parameter (E — and the fact that
the impact of this variable itself hinges upon the relative proportions of our
externality potential (x) to O — makes such a distribution highly suited for
our purposes. Indeed, we feel that an externality potential (x) motivated
Ewens distribution represents the best type of distributional form outcome
to describe our (deterministic based) Game Theoretic microfoundations for
the production of information bytes represented in the preceding subsec-
tions. Why? The “endemic herding” exhibited by the analyst community
under such conditions is we feel a “natural blueprint” for the foundations
of our much desired EDF - that has, in turn, been motivated by our Game
Theoretic discussion to date. Indeed, it is this marrying of our information
byte motivated externality potential (x) with the generalized clustering type
framework described by the Ewens distribution that underlies the entire prin-
ciple of our own EDF. The advantage that our own EDF possesses is that it
is amenable to a whole range of distinct strategic behaviors on behalf of the
analyst community. To illustrate, in the following section we will outline a
number of different calibrations of our Ewens distribution motivated EDF
which are consistent with a range of deterministic Game Theoretic strategic
actions exhibited by the analyst community.

17 Ultimately such an outcome is consistent with a very low presence of externality
potential (x) — as would be the case if most information was singular (E) rather than
memetic (M) in form.
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6.2 Analyst/investor strategies and the ecology of the market

The calibration of our Ewens distribution motivated EDF for a range of
strategic behaviors exhibited by the analyst community is relatively straight-
forward. For starters, let us assume our “market ecology” of analysts is
populated by just 50 individuals (Z = 50) choosing from an identical num-
ber of pure strategies (St = 50). Given that the entire Ewens distribution is
motivated by a single parameter ((E) — and that this in turn, for EDF pur-
poses, is driven by the relative proportions of externality potential (x) versus
the innate desire of analysts to join a particular pure strategy group irrespect-
ive of (x) which we have denoted as (}O) — we can thus use the parameter (E
to describe a plethora of potentially interesting strategic behaviors on behalf
of the analyst community. That said, space limitations obviously preclude us
from exploring each and every possible permutation of potentially interest-
ing strategic behavior here. Hopefully however, the three examples we have
selected will provide the reader with at least some insight as to the capabilities
of our time-variant EDF for describing a diverse array of strategic interaction
within the analyst community.

A dominant player information producing strategy'®

In accordance with the underlying principles of our “theme generation”
discussion outlined in Chapter 5, let us assume the market has “anointed”
a particular seer analyst with a “dominant player” mandate. Such machin-
ations would occur had the analyst produced an information byte (or, in
some cases, a series of information bytes) with exceptionally high extern-
ality potential (x). Will there be strategic ramifications from such actions?
Certainly yes. As will be illustrated next, it is not just a case of “to the victor
goes the spoils” in terms of the stream of monopoly profits that a particular
theme generating analyst will reap from their ability to “brand” emergent
themes within the marketplace — as was specified in Equation (5.21) -
but there are also implications from such actions for the distributional form of
assets prices.

To illustrate, (see Figure 6.2), detailing the various degrees of pure strategy
clustering exhibited by the analyst community for alternate values of (E. As
can be readily seen (and as consistent with our earlier statements), a relatively
small value of (E generates a predominance within the analyst community of
a particular pure strategy following cluster, with higher values of (E implying
a much more diverse ecology of pure strategy following groupings.

Undoubtedly under a “dominant player” environ, the degree of herding
displayed by the analyst community would be more commensurate with

18 The discussion in this sub-section is consistent with the premise of “reputation based
herding.” For a detailed discussion of this premise (along with a general overview of
the “herding” literature itself) see Bikhchandani and Sharma (2001).
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Figure 6.2 The cumulative distribution of pure strategy following clusters for varying
levels of (E — exhibiting alternate degrees of analyst ecology within the marketplace

low values of (E. Why is this the case? Quite simply if the market has
bestowed a “dominant player” title upon a particular analyst, this implies
that a particularly powerful emergent theme is already in force.'® As this
theme grows in power — in effect, as the information diffuses within the
wider analyst community — there will be (by definition) more converts to
the particular pure strategy grouping. Hence, (E — 0 as the dominant player
emerges. Ergo, assuming for simplicity that the nonlinear price impact of
the net memetic externality weight across the range of preexisting themes is
constant for the duration of our simulation and that there is a one-to-one
link between the format of financial information (e.g., each Buy “B,” Neut-
ral “N” and Sell “S” recommendation produced by the analyst community)
and asset pricing for singular information (Z), we can thereby use the vari-
ous analyst clustering results exhibited in Figure 6.2 to generate a range of
time-dependent EDFs. Intrinsically, such time-variance in the EDF must, in
turn, depend upon the degree of externality potential (x) that is motivating
analysts to cluster and for our “dominant players” to emerge.

To demonstrate this effect, using (E = 0.1 as a guide, we are able to illustrate
the extreme skewness in the distributional form of asset prices under one
of the more aggressive dominant player strategic assumptions for a given
random seeding of potential “buy/sell” signals at time ¢ across our ecology
of alternate strategy groupings (St) (see Figure 6.3).2° Such skewing could in

19 That is, unless the dominant player mandate is the result of “reputation” effects
from the format of a particular theme producing analyst’s previous information bytes.
Still, to the extent that the market will be mimicking this analyst’s movements, there
will still be a predominance of analysts in a singular pure strategy grouping.

20 These results were generated by assuming 100 distinct randomly seeded “Buy/Sell”
signals (constrained within a range —0.5 < P < +0.5) emulating from our various
defined pure strategy groupings.
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Figure 6.3 The extreme skew in the distributional form of asset prices stemming from
the emergence of a dominant player within the marketplace?!

principle manifest at either the individual asset level (a) or, under extenuating
circumstances across the overall market index level (I) - but more on this later.
Following Equation (6.15) and assuming a direct link between the pres-
ence of externality potential (x), the strategy transition factor (Ib) and
subsequently (E, we can thus identify direct causality between the actual pro-
duction of the seminal information byte that bears extremely high externality
potential (and, in turn, anoints our “dominant player” within the market),
and the concurrent herding by the analyst community into a particular pure
strategy following grouping. Such herding, in turn, promotes a marked skew-
ing in the distributional form of asset prices. Consistent with our earlier
discussion, these forces are truly time dependent given the incessant nature
of information byte — and therefore externality potential (x) — production.
Ultimately, it is the relative degrees of contemporaneous (2) to latent (A)
externality potential (x) effects that will dictate the time dependent evolu-
tion of (x) relative to 1O and through this, the pace of analyst herding, theme
diffusion and the skewing of asset prices. Still, the net result remains the
same — a distinct shift in the distributional form of asset prices over time
which, in turn, enforces a significant departure from the baseline Normal
distributional form assumption that underpins the traditionalist literature.

A cooperative clusters information producing strategy

Under a cooperative information producing strategy regimen we witness
alternating values of (E as analysts cooperatively cluster into various pure
strategies with the aim of collectively harvesting the powerful monopoly

21 Modeled price impact is given in brackets for each pure strategy specified on the
horizontal axis.
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rights attributable to the “seer analyst group.”?? It is this seer analyst group
that eventually produces the seminal information byte bearing exception-
ally high externality potential (x). In accordance with Equation (5.15) the
more labor devoted to new theme research, the higher the eventual sem-
inal information byte output, but ultimately such agglomeration efforts are
time bounded in terms of their cooperative cluster size simply because of the
profit maximizing condition for labor input identified by Equation (5.19).
The fact that such cooperative clusters can happily emerge within the pres-
ence of singular analyst (preexisting thematic) information producers, and
that the success rate of these “new theme seeking” analyst cooperatives may
not always be uniform in pattern, implies a waxing and waning of the clus-
tering coefficient (E as the market gyrates from a near quasi-independent
information state to an environ resembling distinct analyst (and therefore
information) interdependence.?* Consistent with our arguments in the pre-
vious subsection, obviously the degree of such interdependence skyrockets
when a particular cooperative cluster “strikes it lucky” and a new theme
is born.

What does all this imply for the distributional form of asset prices? To illus-
trate, we adopt a time evolution path for (E in our calibrations later. Here the
market is at best characterized as being in a schizophrenic state — alternating
between a plethora of various pure strategy following “warring tribe” ana-
lyst factions to dramatic “bandwagon jumping” effects. Such “bandwagon
jumping” occurs when a particular cooperative cluster develops a new theme
generating information byte that possess a high degree of externality poten-
tial (x) and singular analysts decide en masse to follow the traditional path of
information diffusion and switch to the evolving new theme pure strategy.

The “Big Call” information producing strategy

Finally we consider what we label as the “Big Call” information producing
strategy. As was briefly discussed in Chapter 5, at times analysts can attempt
to brand themselves via a “Big Call” in the sense that the actual format of
the new theme generating information byte they produce will be so viol-
ently opposed to the existing theme structure that it is likely to provoke a

22 An alternative explanation for such behavior could be motivated by using the theory
of social conformity - albeit a shifting one — as developed by Bernheim (1994). Or a
model of “stochastic recruitment” as described by Kirman (1993).

23 The fact that we are implying a certain “lumpiness” in the success rate of a given
cooperative cluster tells us that the rate of new theme generation specified in Equa-
tion (5.15) should in principle change from a deterministic format to a probabilistic
format - if only on a per unit of time basis and only for the exposition of this particular
sub-section. That said, such an adjustment should not cause too much disruption to
the general equilibrium framework espoused in Chapter 5 as Grossman and Helpman
have demonstrated precisely such an extension for this form of model - see Grossman
and Helpman (1991) Chapter 4.
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significant market response — should such an information byte actually take
hold. Ultimately, the “take-up” of such a diametrically opposed opinion
to the prevailing market consensus would require considerable additional
memetic reinforcing information from extraneous sources — such are the
conditions for making a “Big Call” in the first place. That said, the payoff
is immense for the enterprising analyst who is willing enough to make such
an opinion known to the wider marketplace. This is because such “Big Calls”
(by definition) have the potential to invoke swings not just in the theme
structure applicable to a particular asset (a) but, given their very nature, also
potentially provoke shifts in the overall market index (I). Such swings in mar-
ket sentiment imply even more monopolistic profit for “Big Call” analysts to
harvest as their opinions begin to transcend traditional boundaries.

An additional factor to consider in making a “Big Call” is that given their
often violent contrast to the ruling market ethos, such calls — on the proviso
they are right — can result in a rapid take-up by the residual analyst com-
munity once the reinforcing memetic information arrives. Subsequently, in
accordance with Equation (5.21) the present value discount factor associated
with making such a call is not so much of a drag on the net return to the
analyst at time ¢ - so in short, this implies more money up-front to the “Big
Call” analyst.

All this adds up to a significant incentive for analysts to embark upon such a
strategy but — as always — there is the potential for downside. How does such
a downside occur? Quite simply in the sense that if one cries “wolf” too often
and gets it wrong then they could suffer some form of reputational loss. Given
that our extensive form game microfoundations governing analyst behavior
are truly evolutionary in foundation and that there are (by definition) no ¢
to t 4+ 1 reputations being built, such a “reputational drag” can only manifest
within the context of the format of each analyst’s information byte provision.
So in short, if an analyst’s strike rate in making a “Big Call” accurately in the
past is quite high, they will typically require less ancillary supportive inform-
ation before other analysts (and thereby investors) convert to the new theme
and the “Big Call” analyst starts reaping monopolistic reward. Obviously,
if such an analyst’s strike rate is quite low, then it may take a considerable
amount of supportive memetic evidence before the wider market begins to
believe them.

What does this behavior imply for the distributional form of asset prices?
Basically, both the pattern of analyst clustering formations and the potential
for diametrically opposed skews in asset prices will be even more violent than
those expressed in Figure 6.4. To demonstrate, we have calibrated our Ewens
distribution motivated EDF for such “Big Call” swings and have demonstrated
the results in Figure 6.5.

So how do we move from these types of calibrations of our Ewens distribu-
tion motivated EDF toward a better array of financial engineering techniques?
Again, space limitations preclude us from exploring each and every possible
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Figure 6.4 Swings in the distributional form of asset prices as cooperative analyst
clusters form, become successful and then their influence wanes
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Figure 6.5 Violent swings in the distributional form of asset prices as enterprising
analysts embark upon a “Big Call” information producing strategy

permutation. That said, in the following section we will outline at least some
of the more significant findings illustrating how our EDF can significantly
alter one’s precepts of standard financial engineering “best practice” as it is
known and applied today.

6.3 Some implications of our results

In the following subsections we detail three of what we believe to be the
more significant areas where our evolutionary approach toward information
in finance — and through this, the genesis of our EDF — alter standard finan-
cial engineering “best practice” precepts in a significant way. In particular, we
tackle the issues of option pricing, risk measurement and portfolio construc-
tion. Obviously our EDF extends into other areas of financial engineering
too - such as fixed-income factor modeling and time-series analysis tech-
niques - but space limitations preclude us from exploring these avenues in
greater detail here. That said, we cite these areas as potential fields of fruitful
future research.
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Implications for option pricing

The implications of our EDF for option pricing are profound. To illustrate
why, we must at first provide some background on option price theory as it
presently stands. Here we investigate the theoretical underpinnings of the
seminal Black-Scholes option pricing equation and numerical techniques
such as finite difference methods, binominal/trinomial trees and Monte
Carlo simulation. As is often the case in a wide-ranging thesis such as ours,
there is obviously no way we can do justice to the entire gamut of option
pricing theory as it presently stands in the short space we have available to
us here. For such insights, readers are referred to seminal texts such as Haug
(1997), Hull (1997) and Wilmott (1998). Still, we hope the box below will

Options Pricing 10124

The Black-Scholes option pricing method?®

The Black-Scholes option pricing formula is the benchmark for standard
traditionalist-based financial engineering “best practice” as it applies to the dif-
ficult area of option pricing. The most simple method to derive the Black-Scholes
option pricing equation is through the conduit of delta hedging. To begin with,
let us use IT to denote the value of a portfolio composed of one long (European)
option position and one short position of the underlying asset. We use A (delta) to
denote the quantity we are short the underlying asset so that

M=V, 1) —AS; (6.22)
where V (S, t) is the option; and S is the underlying asset.
Now, as consistent with traditionalist theory, we assume asset prices follow the
ubiquitous random walk principle. That is

ds = pSdt + o SdX. (6.23)

This explicitly allows us to introduce the element of time, so our portfolio will now
(at least in principle) evolve according to

dIl = dV — AdS. (6.24)

24 Note that the variable labeling in this shaded section follows standard option pri-
cing terminology and as a consequence the nomenclature may differ a little from
the remainder of the book. The reason for this is that a standardized set of variable
labels has evolved for this particular branch of financial engineering — the “Greeks”
for instance (A, T, ®, Vega, p) — which are used as an effective shorthand to describe
various elasticity responses to an option’s price.

25 See Black and Scholes (1973) - although the derivation of this formula can be found
in many derivatives texts.
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Appealing to It0’s lemma (which in essence, represents a Taylor’s series expansion
for stochastic rather than deterministic problems) we know that dV will evolve in
a pattern according to

2aV

v . v L
v=2lar+ 2 = 2
dV = Sdt + S dSt + 308> dt. (6.25)

2

Substituting Equation (6.25) into Equation (6.24) gives

dr = —dt + ﬁdSt + - Zsz—dt — AdS. (6.26)

Now, we explicitly delta hedge by choosing

A%
A=— 6.27

3S (6.27)
this important step effectively eliminates the “random” component of the random
walk. Therefore Equation (6.26) can now be expressed as a portfolio that is wholly
deterministic in form with

v 32V
dll = | — + = o282 dt. 6.28
<8t + 352> (6.28)

Next, we introduce the following no-arbitrage principle to “zero in” on the correct
price for the option

dIl = rTidt. (6.29)

Finally, by substituting Equations (6.22), (6.27) and (6.28) into our no-arbitrage
principle — Equation (6.29) - and dividing by dt, we are able to ascertain the Black-
Scholes option pricing equation

Z—V %(7252 2)5‘2/ +rs% -1V =0. (6.30)
Obviously in the above, the crucial element is the initial assumption of the “random
walk” that underlies the entire principle of the evolution of the underlying asset’s
price. This is because the “randomness” in dS allows us to delta hedge and convert
a stochastic option price formula into a deterministic one. As we have stressed on
in a number of occasions in this book, the Game Theoretic microfoundation prin-
ciples generating our EDF are primarily deterministic in nature — not stochastic —
and especially not Gaussian in form. As a consequence, we are precluded from
attempting any form of theoretical type delta hedging solutions for modeling the
evolution of option prices as “risk” effectively fails to cancel in any manipulations
of our results. In short, there is effectively no “closed form” solution for an EDF
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inspired option price. Thankfully, there is an alternate route — the principles of
which we will elaborate upon next.

Numerical methods

There is another route toward pricing options other than purely closed form the-
oretical expositions. Here computer intensive numerical methods reign supreme.
These techniques generally aim to time-step the potential array of (probability
driven) asset price permutations via a highly iterative technique with the objective
of approximating the various required coefficients for solving the delta hedging/
no-arbitrage conditions of an option’s price (which, along with the “random walk”
assumption, formed the foundations for the solution of the Black-Scholes model
cited earlier).26

The most frequently used numerical methods are finite difference methods,
binomial/trinomial trees and Monte Carlo simulation. That said, we will not
dwell too long on these particular solution techniques here as we will actually
use a numerical method to solve the necessary “optimal option price” condi-
tions under our Game Theoretic motivated EDF conditions a little later in this
subsection.

That said, what we should point out at this stage is that we are not the only
authors to adopt numerical methods to describe the derivation of option prices
that have been generated from a Game Theoretic microfoundation. Shafer and
Vovk (2001) for example, have illustrated the use of numerical techniques to solve
various option pricing problems that have independent information Game Theor-
etic foundations as their primary mechanism for generating the “observed market
price.” To illustrate the applicability of their approach, we have simulated an inde-
pendent information iterative game between two information producing analysts
following the framework generalized in Figure 6.1 and where the format of each
information byte is assumed to have a one-to-one link with (a normalized) repres-
entative asset (i). As can be seen in Figure 6.6, the price output of such a game does
produce highly acceptable index values whose movements do appear to rapidly
converge to the targeted Gaussian form.

Given the obvious Gaussian outcome of such a game — an outcome alluded to in
our discussion of Game Theory in Chapter 3 — there is little surprise at the relative
ease with which these purpose built Game Theoretic foundations can be used to
support the traditionalist cause. Importantly however, it is essential to remember
that such a game was founded on the principles of independent information - not,
as in our case, interdependent information.

26 Finite difference methods are perhaps the closest in structure to the original Black-
Scholes option pricing technique with Binomial/Trinomial techniques relying only
indirectly on Black-Scholes analysis. Indeed, for Monte Carlo simulations the under-
lying process can be described in even simpler terms of “attempting to ascertain the
expected present value of the payoff of an option.” Finally one should note that
some of these methods are particularly useful for modeling American options where
early expiry is an issue and traditional closed form theoretical modeling has proven
ineffectual.
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Figure 6.6 The index values and distributional form outcome of an independent
information game between two competing analysts

Recent advancements in option pricing theory

Still, the proverbial “thorn in the side” for the traditionalists has been the steadfast
refusal of the various applied outcomes of the traditionalist (Gaussian based) option
pricing techniques to adhere to their theoretical pure pricing perfection. Nowhere
is this better displayed than the ubiquitous presence of volatility smiles.?” Another
major problem from a practitioner’s standpoint is that the Black-Scholes option
pricing formula assumes delta hedging is a continuous affair whereas real world
asset markets do not allow this to be the case.

The fact that such departures from confines of the traditionalist stringent
assumption set are so commonplace that it has resulted in a recent explosion of liter-
ature attempting to derive alternate option pricing methods that take into account
(amongs other things) such features as the ubiquitous kurtosis of asset markets.
Some of these studies have already been outlined in Chapter 3 — especially those
generated from within the Econophysics paradigm.?® Still, there are a number of
such studies that are not so radically opposed to traditionalist thinking and instead
attempt to adapt traditionalist methods so as to make them more applicable to the
inevitable realities of applied asset markets. Some references of note operating more
within the standard confines of the traditionalist literature are for example Boyle
and Emanuel (1980), Leland (1985), Hull and White (1987), Hoggard et al. (1994),
Avellanda et al. (1995), Wilmott et al. (1997) and Rebonato (1999).

27 Indeed, the pervasive presence of such “smiley” options markets was briefly dis-
cussed in our outlining of the various “attacks” upon traditionalist based assumptions
of market behavior — see Chapter 4.

28 See for instance Bouchaud and Sornette (1994), Bouchaud et al. (1996) and Voit
(2000). For a perspective on excess kurtosis in financial markets — see Bouchaud and
Cont (1998). As for the pricing of options in an “adaptive system” excess kurtosis
financial market — see Potters et al. (1998).
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provide our readers with the necessary criteria for understanding at least some
of the basics of this highly complex (and rapidly developing) area of financial
engineering. In adopting such a didactic path, our primary aim is simple —
that is, to lay the foundations for illustrating why our EDF fundamentally
challenges the basic principles underlying standard traditionalist-based fin-
ancial engineering “best practice” with regard to option pricing (at least as it
is implemented in its “purest” form).

So how do we move from these principles to our own evolutionary pur-
view on option pricing? To motivate our EDF directed option pricing formula
we appeal to the implied trinomial tree method developed by Yamada and
Primbs (2002). Implied trinomial trees have been around for some time -
the introduction of the method was first developed in a series of papers by
Dupire (1994), Derman and Kani (1994) and Rubinstein (1994). Such meth-
ods have the distinct advantage of being able to incorporate real (rather than
hypothetical) market data.?’ The beauty of the Yamada and Primbs (2002)
extension of the implied trinomial tree method is that it allows for a gen-
eralized array of distributional forms - not just the Gaussian distributional
form - to be adopted in the algorithmic interpolation of implied probabilities
when modeling the price movements of the underlying asset. Theoretically
therefore, we are able to “plug in” our own EDF into the Yamada-Primbs
algorithmic sequence and “back-out” an optimal option price. We feel this
to be a nice result and hence have adopted the Yamada—Primbs procedure.

The general principle of the Yamada-Primbs approach - like all implied
trinomial trees — is to construct a series of fitted price steps for the underly-
ing asset and, in accordance with the principle of delta hedging and the
no-arbitrage condition, to algorithmically ascertain the present value of
the payoff of an option once the potential array of price movements for
the underlying asset has been displayed. As the name “trinomial” would
imply, such price step movements for the underlying asset are assumed to
take on one of three potential directions at any node t to t + 1. That is,
the price of the underlying asset has the potential to move up, down or
sideways.?? Such an assumption sits perfectly with our hypothesized interde-
pendent information extensive form game between analysts — as represented
in Figure 6.1. This is because a “Buy” recommendation is assumed to res-
ult in an upward price movement, a “Neutral” recommendation results in
a lateral movement and a “Sell” recommendation results in a downward
movement — thus providing a one-to-one fit with the trinomial method in
general.

29 Indeed, it is this “real versus hypothesized” distinction that differentiates implied
trinomial trees from standard trinomial trees as developed by Boyle (1977).

30 This contrasts the Binomial method — as developed by Cox et al. (1979) and
Rendleman and Bartter (1979) — where only an “up/down” movement is allowed.
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Figure 6.7 A trinomial tree extension to our interdependent extensive form game and
the linkage that this has with our Evolutionary Distributional Form

As a consequence of this apparent “natural extension” of the Game
Theoretic principles that have been presented in this chapter thus far, we
are able to represent the generalized principle of the information driven
trinomial tree as shown in Figure 6.7.

So how does one move from this lattice based assessment of an incomplete
market model (it is “incomplete” as it hypothetically allows for non-Gaussian
distributional forms to which, as discussed earlier, there is no closed form
theoretical solution) toward actually solving the optimal hedging problem
for a chosen option? The answer is represented in the following relatively
simple objective function

Minimize E(Cally — ir|So),
subject to sty € Sty, (6.31)

where

Cally is the value of the call option at terminal time T;

Wr the value of the portfolio of the underlying asset at terminal time T;

So the strike price for the call option;

st, the optimal trading strategy path given the array of price distributional
probabilities so that the final payoff of the call option replicates the value of
the underlying portfolio; and

Sty is the entire trading strategy set.

The above represents the objective function for modeling the delta
hedged/no-arbitrage condition of a European Call option. Simply by choos-
ing the optimal trading path - given the array of (EDF determined) underlying
price probabilities represented on the trinomial tree — we can obtain an out-
come at terminal node T where there is little to no difference between the
payoff of the call option and a prespecified portfolio (W) of the underlying.
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This effectively solves our “optimal” option pricing problem.?' The fact that
we are using a trading strategy (st;) to derive such a solution sits nicely
with the information producing strategies outlined in the previous section —
especially given that such an optimal trading path has a classic “Buy,”
“Neutral” and “Sell” trinomial foundation. Hence, the natural fit between
the Yamada and Primbs approach and our Game Theoretic microfoundations
that have been methodically built up over the preceding pages.

So how to solve for this optimal trading path given the lattice probabilities
determined by our EDF? Quite simply the result is obtained by an iterative
algorithmic technique that:

1 assigns the probabilities to the various price steps of the underlying
asset (a) in accordance with our earlier identified EDF;

2 determines the probabilities on the edge of the terminal node T by solving
the network flow optimization; and

3 computes the initial price of the call option (Cy) by dynamic program-
ming across the trinomial lattice once the necessary probabilities have been
obtained in Step 2.

It is in Step 1 that the greatest potential for our approach resides. Why?
Well, in accordance with the very nature of our EDF we are not only
able to give “real” approximations of the lattice probabilities stemming
from some static (historical) distribution of asset prices, but we are also
able to offer the concept of an evolving distribution as well. That is, by
ascertaining the underlying memetic structure that drives the emergence
of certain “winning strategies” (which analysts and investors use to guide
their behavior) from a preexisting strategy set, we are able to interpolate
the signals from such strategies — along with using a proprietary epoch
matching technique - to give a better approximation of ex ante asset price
movements and through this likely directional swings in a given asset’s
distributional form.

For example, by identifying that a particular valuation based strategy is
in the early stages of forming into a market “theme,” we can interpolate
the current signals from such a strategy to give a better approximation
of the average forward price movements of both “growth” encoded and
“value” encoded assets. Further, by matching various epochs in the past
when this particular valuation based strategy was emerging in dominance

31Even though we have used a European Call option by way of example in
Equation (6.31), the underlying methodology applies just as well to Put options,
American options, barriers and other exotics. See Yamada and Primbs (2002) for more
details.
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and observing the various moment distributions of the selected underlying
asset, we are able to build up a profile of not just the likely mean but also the
various additional moments (variance, skew, kurtosis) of our tailored EDF.
In other words, we are able to “bespoke” an ex ante EDF to suit any par-
ticular underlying asset for which the option in question is attempting to
replicate.

Ergo, at each t to t 4+ 1 node of our Game Theoretic trinomial lattice we
can provide a much more accurate representation as to the likely probab-
ilities of any given up, down or lateral price movement of the underlying
asset (a). Obviously the further we step ahead in time, the less robust such
forecasts become but ultimately our forward looking constantly evolving EDF
approach which is tailored to the particular asset in question represents a
distinctly better approach than a “one size fits all” generalized (real data)
distributional form assumption that is traditionally rigidly applied at each
informational node.

Precisely how we are able to estimate such probabilities — and by default,
plot the time path evolution of our EDF as a particular emergent strategy
begins to take hold — will be discussed in greater detail in Chapter 7. Suffice
to say here, it is for the simple reason of providing a better assessment as to
the true probabilities of underlying asset prices at each step of our implied
trinomial lattice technique that we feel our EDF inspired approach toward
option pricing has much to offer in the field of financial engineering “best
practice” as it presently stands.

Implications for value-at-risk analysis

Can we utilize our innovative memetic based approach for predicting the
time-dependent evolution of our EDF to give a better approximation of
portfolio risk? The answer most certainly is “yes.” Present industry stand-
ards call upon the Gaussian based Value-at-Risk method (or “VaR” as it
is commonly known) to approximate the maximal possible drawdown for
a given portfolio — subject to a specified timeframe and confidence cri-
teria. As we will demonstrate in the box next, the principles underlying
VaR are extremely straightforward. That said, simplicity does come at a
cost as VaR at times has failed to provide adequate forewarning as to the
potential for portfolio drawdown exposures that manifest when theoretic-
ally highly improbable market “events” have occurred — sometimes with
surprising ubiquity as our discussion of “volatility clustering” in Chapter 3
intimates. Such is the nature of the kurtosis beast. As will be seen, this
unfortunate fact of market life has lead to an array of adapted VaR meas-
ures to emerge within the literature — some of the basic principles of which
we ourselves will draw upon in our own Evolutionary Value-at-Risk (EVaR)
technique.
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Value-at-Risk (VaR) for Beginners
The basic principle

As highlighted earlier, the premise underlying VaR is extremely simple. As Wilmott
(1998) stated “Value at Risk is an estimate, with a given degree of confidence, of how
much one can lose from one’s portfolio over a given time horizon.”32 The “estim-
ate” itself is derived from applying the ubiquitous Gaussian distributional form to
the asset or portfolio in question - typically via utilizing a Monte Carlo or boot-
strapping technique (conditioned of course for the user’s objective timeframe) — so
as to obtain a range of hypothetical percentage return movements for the underly-
ing. Then it is simply a case of applying a specified confidence interval — typically
setat 95, 97.5 or 99 percent — to ascertain the maximum potential loss (drawdown)
given the “worst possible” situation. Unfortunately, as we have recounted upon
at various times in this text, the Gaussian purview of “worst possible” does not
necessarily always hold true.

Figure 6.8 shows just how simple VaR actually is, below we demonstrate (with
the aid of a graphic) a hypothetical VaR calculation.

To ascertain VaR from the above it is thus a simple case of taking into con-
sideration the quantity of an asset held, the duration over which the maximum
loss condition is to be calculated (one’s time horizon) and the present price of the
underlying asset (a). Ergo, VaR for a zero drift asset in such circumstances is

VaR = —6,Q,P(a)(3t)/? Normy (1 — ¢); (6.32)

where

o, is the standard deviation of the returns for the underlying asset (a);
Qg is the quantity held of the underlying asset (a);

P(a) is the price of the underlying asset (a);

Pr [R(a)l .05
where

c=specified confidence interval;
R(a) =% return for asset (a);
a=mMmean return for asset (a); and
R, (a)=projected loss for asset (a).

(1-¢)

RL(a) Ma R(a)

Figure 6.8 VaR at its simplest

32 See Wilmott (1998, p- 547). For further details on the VaR technique, refer to Jorion
(1997).
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@t)V/2 time horizon;
Normpyny the inverse of the cumulative Normal distribution (in standardized form);
and
c is the confidence interval.

However, taking into consideration drift (a positive or negative mean return for
the underlying asset) Equation (6.32) becomes

VaR = Q,P(a) [Maat — 622 Normpny (1 — c)] ; (6.33)

where p, is the mean return of the underlying asset (a).

The calculation of VaR for a portfolio is a little more difficult as such calculations
need to take into consideration the covariance between assets. Still, the formula is
relatively straight forward with VaR being calculated as

B B
VaR = —Normmv (1 — ) @1)"* | Y 3" Q,Q0.0,Corr,,; (6.34)
v=1 n=1

where

Q, is the quantity held of the vth asset;

Q, is quantity held of the nth asset;

s the number of assets held in the portfolio;

o, the standard deviation of the sth asset;

o, the standard deviation of the nth asset;

and Corr,, is the respective correlation between each v, n asset.

For derivatives, the calculation of VaR is one step further along the road to dif-
ficulty as one must take into account the nonlinear nature between a change in
the price of the derivative and a change in the underlying asset. Still, for very
short time horizons the general approach is not too difficult with a simple delta
approximation of Equation (6.34) generating meaningful results33

B B
VaR = —Normyny (1 — ¢)(31) /2 Z Z A, A,0,0,COIT,,, (6.35)
=1 =1

where

A, is the delta of the «th option; and
A, is the delta of the nth option.

Pitfalls and adaptations to VaR

As we have been at pains to point out upon numerous occasions, Gaussian based
methods do have their inherent shortcomings and VaR is no exception. These obvi-
ous pitfalls have lead to a number of adaptations to the theory. Some like Wilmott’s
(1998) Crashmetrics seek to extend the generalized principle with no assumption

33 For longer time horizons, VaR calculations for a portfolio of derivatives becomes
discernibly more difficult with a Delta — Gamma approximation providing at least one
avenue for solution. See Wilmott (1998) for details.
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at all as to distributional form. Others, such as Bouchaud and Potters (2003) aim to
adopt an entirely new distributional approach. As will be seen, our EVaR method
moves even further away from the static distribution fitting technique by adopt-
ing an entirely new memetic string based algorithmic search that is distributional
ex ante rather than ex post.

So how does our method of EVaR actually work? Well, frankly the approach
is not too dissimilar from the tact we adopted in our EDF option pricing
technique. That is, we:

1 adoptan algorithmic memetic string search matching various preconceived
strategy performances vis-a-vis the appearance of particular information
bytes, memes and even themes;

2 we then use these results to match against the given informational environ
at any given time ¢ to ascertain which particular preconceived strategy is in
the emergent stage and is thus (thanks to the strength of payoff function
“pull”) likely to see a number of analysts switching (herding) into this
particular preconceived strategy;

3 we then interpolate the present signals from such a strategy (along with
an epoch matching mechanism) to build up the various “moments” of our
EDF for a given selected asset (or portfolio of assets); and finally

4 we then use these moments to provide a better approximation as to the
potential for any given drawdown over a specified investment holding
period.

There are a number of inherent beauties within our EVaR approach. For
starters, it is nonparametric - thus circumventing the excess kurtosis problem
that plagues the Gaussian based methods. Further, our approach is distri-
butional predictive rather than backward-looking and thus gives the user a
better approximation of the true risk of holding an asset over their specified
(by definition) forward-looking investment period. Finally, once setup, our
approach is relatively simple to use as it makes no distinction between singu-
lar assets or entire portfolio’s of assets, and no distinction between asset type —
with equity, bond and derivative being treated in similar fashion. In effect,
all one needs is a time-series of the particular asset’s (or portfolio’s) returns,
a set of preconceived strategy — valuation based, technical based, economic
based - performances, and the market-wide information set that is to be used
to garner a series of predictive memetic strings for such strategy perform-
ances. From this, using the algorithms we have developed in Chapter 7, it is
relatively straightforward to build an ex ante projection for our EDF and from
this compute the probabilities of certain pre-specified drawdowns — it's really
that simple.
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Implications for portfolio theory

Does our EVaR principle (and its subsequent dependence upon our EDF)
have anything to offer in the field of portfolio theory? Again, the answer
is absolutely “yes.” Markowitz mean/variance portfolio optimization has
been around since the 1950s — 1952 to be precise — and like VaR, is now
so commonplace that it is generally taken for granted as being part of any
financial engineer’s “best practice” toolkit. But is there a better way to build
an “optimal” portfolio? Part of the problem with principles such as VaR and
Markowitz portfolio theory (also known as Modern Portfolio Theory — or
“MPT”) is that they are so fundamentally simple to use that many do not
question the plethora of stringent underlying assumptions that constitute
their foundations. As a consequence, quite often there is a serious disconnect
between the theory and the applied — which is quite often to the chagrin of
many practitioners who fail to realize the stringency of such assumptions
until after some unexpected (generally unpleasant) market “event.”

As we have done in each of our previous case studies illustrating where our
pioneering approach toward EDF stands to upset the reigning status quo of
financial engineering “best practice,” below we outline the basic principles of
the Gaussian based theory of Modern Portfolio Theory as it presently stands.
As we have already detailed earlier, the basic principles of MPT are hardly
what one would label to be “rocket science” — but within such inherent sim-
plicity reside some very limiting assumptions which, at times, stand to trap
unwary market players.

Portfolio Theory in a Nutshell3*
Basically, the entire thrust of MPT can be summarized with the following object-
ive function

R
Max —2, (6.36)
op

where

Ry is the portfolio return over a specified timeframe on s risky assets; and
op the standard deviation (risk) of the portfolio.

That is, the objective function of portfolio theory is simply to maximize the
return on a group of assets per incremental unit of risk.3> Underlyingthis premise, is

34 For a comprehensive overview of MPT as it presently stands, see Markowitz (1991)
and Sharpe (2000). For an illustration of the resampling technique, see Michaud (1998).
35 Obviously this is done by varying a series of asset weightings that satisfy certain
constraints. The constraints imposed vary as per the requirements (mandate) of the
user but they generally include — summation to 100 percent, a holding of >0 percent
for “long only” portfolios, and (at times) pre-specified tracking error minimization
weighting bands for individual assets.
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a utility function that assumes investors prefer less volatility (risk) in their portfolio
returns with such a utility function being described as

Uw); Uw=>0 U'(w) <0, (6.37)
where U represents investor utility and w represents investor wealth. Since it is
assumed rational investors prefer more wealth to less, their utility function is said

to be strictly concave with the absolute risk aversion expressed as

u” W)
Uw)’

AWw) = — (6.38)

Note that return and risk observations can be expressed either in ex ante or ex post
sense. When both risk and return are expressed in an ex ante sense and return is
measured as excess to the risk-free rate, then the maximization condition expressed
as Equation (6.36) constitutes the Sharpe (1963) ratio. That said, in many instances
historical risk and return variables are taken as a guide in forming an opinion of
the most likely future value of the risk/return relativity.

Covariance: The foundation for deriving efficient portfolios

It is really the degree of covariance among assets that drives the rationale behind
portfolio theory.3¢ Adding assets to a portfolio that have a less than perfect positive
correlation with the existing assets within the portfolio (preferably that is, with a
negative correlation) results in an overall lowering of op and helps lift the overall
Sharpe ratio for the portfolio as a whole. In general, covariance is expressed in
standardized form - the correlation coefficient (Cotr,,). The Corr,, for any two sin-
gular assets ranges between —1 < Corr,, < +1. Given that this is the case, the range
of efficient frontiers generated by an optimized version of MPT for the given range
of Corr,, values can be concisely represented by Figure 6.9. Obviously “optimized”
is the operative word in the previous sentence. Now that we have spelt out the
basic principles of MPT, the next question is to ask is — how is the efficient fron-
tier actually formed? In other words, how is an optimization of the maximization
condition represented by Equation (6.36) actually conducted so that a set of “effi-
cient portfolios” is effectively obtained? To answer this, we must understand a little
about the mechanics of optimizers themselves.

A final word on optimization techniques

Before starting, it is important to realize that in the theoretical world one has the
luxury of placing certain limitations on a particular model’s form so as to ensure
only “well-behaved” functions are optimized. In our case, this implies continuous
convexity to guarantee that a local minimum risk per unit of return equates

36 Indeed, the estimation of the covariance matrix for portfolio construction has now
become an entire subject in its own right — see Litterman (2003) Chapter 16 for details.
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op

Figure 6.9 The hypothetical efficient frontier for various gradings of Corry,

to a global minimum provided F'(x) =0 and F”(x) > 0. We can thus be sure that
our efficient frontier represents the only possible maximum return (minimum
risk) solution. However, the nonlinearities that evolve under constrained portfolio
construction in the applied world tell us that well-behaved functional forms are
generally not guaranteed. In most cases, rational investor behavior implies a well-
behaved functional form but it needs to be pointed out that this is an assumed
starting point, it is not a mathematical fact.

So what of portfolio optimization techniques per se? In most cases, portfolio
optimization coding involves some form of quadratic programming technique
(minimization of a quadratic function subject to linear constraints). Quite often
the Simplex Method is used for quadratic programming. The Simplex Method is
a recursive program that sequentially deviates from a “best guess” local minima
position by advancing if the next variable is less (or if maximizing, more) than
the existing or retreating if the opposite is true. As identified earlier, this approach
cannot unequivocally guarantee a global maximum/minimum is obtained. To help
overcome this deficiency a Simulated Annealing process is used (adding or subtract-
ing a random number to the advance/retreat step function). This provides a useful
means of testing the robustness of the local minimum solution. Still, it must be
re-iterated that even with Simulated Annealing there are no absolute guarantees
that a global minimum (or maximum) has been achieved.3”

A relatively new approach toward optimization are Interior-Point methods.
These emerged from the publication of a paper by Karmarkar in 1984 (Dantzig
developed the Simplex Method in the 1940s). Of the class of Interior-Point
methods, Primal-Dual algorithms have risen to be the most important. With regard
to these algorithms, most Interior-Point software written since 1990 has been based
on Mehrotra’s predictor—corrector algorithm. What this method does is that rather

37 One way of testing for global minimum is by testing if the Hessian matrix is positive
definite. If this is the case, then a global solution is found. If the Hessian matrix is
indefinite, a Kuhn-Tucker point (that is usually a local solution) is found.
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than moving around the boundary of the solution set from vertex to vertex as
Simplex Methods do, this class of Interior-Point method takes an entirely differ-
ent approach by optimizing both the objective (primal) function and the order of
magnitude of the local minimum deviation step (dual) equation simultaneously.
One benefit of this approach is that this class of algorithm tends to converge much
faster than Simplex algorithms. The approach initially uses the constraint vector as
the initial interior point from where to start the local maximization/minimization
search. The combination of the speed of this iterative process and the nonran-
domness of the local minimum testing facility imply that the Primal-Dual Interior
method is generally regarded as mathematically superior to the Simplex Method -
even with Simulated Annealing.

So how does our evolutionary approach toward portfolio theory (EPT)
actually work? Again, the premise is very simple. Using a fundamentally
similar technique to our EVaR for portfolios, we basically conduct a memetic
string search matching various preconceived strategy performances vis-a-vis
a given memetic information-set. We then match this information-set relat-
ive to our present time t and to the predicted (biological-like) byte to meme,
meme to theme information building network that is assumed to underlie the
predictive emergence of a particular dominant winning strategy. It is through
this that we are able to plot the future path of our EDE. Optimal weights are
then garnered - subject to minimal drawdown conditions — via an iterat-
ive process for each asset within our selected asset universe by examining
past epoch performances when such an emergent strategy was growing in
dominance. Time is explicitly taken into account in our formulations simply
because we plot the forward time path of the emergent strategy’s growing
dominance - as consistent with our concept of theme diffusion discussed
in Chapter 4. Subsequently, through this we are able to generate a set of
time evolving optimal portfolio weights for each asset within our selected
asset universe.

Therefore, like our EVaR methodology, the general principle of our EPT
is intrinsically appealing to the practitioner. For starters, again it represents
a nonparametric method that is fundamentally ex ante rather than ex post
in foundation. This is truly a differentiating feature when it comes to risk
assessment as most MPT methods are not only Gaussian based but also
take a backward looking approach when it comes to quantifying risk. This
is a severely limiting assumption when constructing a portfolio as invest-
ment decisions (by definition) are forward-looking. Having the benefit of an
ex ante perspective in the way that not only portfolio return but also portfo-
lio risk is set to evolve going forward in response to the unrelenting flow of
information - as typified by the market’s information genome (3" ¢) — is an
invaluable guide to the practitioner. Furthermore, since our approach is fun-
damentally algorithmic based as it conducts its iterative conditional search,
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a plethora of ancillary conditions (other than simple drawdown) can there-
fore be taken into account within our EPT directed portfolio construction.
Finally, because our EPT portfolio weights are time evolving in response to
the predicted emergent information flow, they are fundamentally superior to
most static approximations of MPT - even with the addition of the periodic
rebalancing that some practitioners insist upon. Still, we will dwell on these
details more in Chapter 7.

So to conclude, all up we feel our memetic string based algorithmic evol-
utionary methods — as embodied in our critique of Evolutionary Option
Pricing, Evolutionary Value-at-Risk and Evolutionary Portfolio Theory — rep-
resent a complete watershed in thinking as to financial engineering “best
practice” as it is both known and practiced today. All of these methods
have as their foundations the fundamental premise of our strategy directed
EDF which uniquely takes a microfoundation informational perspective as
to the likely evolution path of both risk and return. Still, all this has not yet
demonstrated how our revolutionary evolutionary methods necessarily work
in practice. To do this, we turn to Chapter 7 where we outline some of the
outstanding results that we have achieved by utilizing such methods.
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Evolutionary Finance — an
Applied Perspective

This is where things get interesting. So far, this book has been laboriously
outlining an entirely new theoretical thought paradigm for assessing how
the microstructure of information interacts in a biological-like/evolutionary
fashion to “build” asset prices. This extensive discussion was a necessary
evil for what is about to follow. In this particular chapter we will out-
line our experience with putting the theoretical principles of Evolutionary
Finance (as espoused in Chapters 1-6) into action using our proprietary soft-
ware platform Natural Selection™. This advanced software package has been
purposefully built to demonstrate how an optimal array of risk/return com-
binations can be constructed for a variety of absolute return mandates using
bioinformatics based “structured information” principles. By doing so, like
every great conclusion to a good story, we assiduously seek to weave the vari-
ous strands we have presented in our theoretical foundations thus far into
the algorithmic foundations of our Natural Selection™ model. For example,
Natural Selection™ is founded on:

e how humans intrinsically categorize and encode interdependent
information;

e how preconceived strategies are the most obvious embodiment of such
behavior in the financial realm; and

e how it is possible to move “upstream” in this “winning strategy” theme
diffusion process by forming an understanding of the early stage signaling
of byte to meme, meme to theme, theme to overall market sentiment
formation.

By adopting such a tact we will illustrate how our comprehensive investment
process can in principle be labeled as being “adaptively predatory.” Why is
this the case? In a sense, by using upstream memetic informational indicat-
ors to provide early stage warning signals as to the take-up (our “longs”) or

202
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failure (our “shorts”) of a particular investment strategy by the wider financial
community we are able to prey upon other investors fallibilities. Such incum-
bents typically are either slavishly adhering to a static investment philosophy
(a fatal error in a truly dynamic marketplace) or alternately placing too much
emphasis on a simplistic heuristic rule of thumb (strategy) for investing that
is not “rich” enough in an informational context to process all the necessary
key memetic information signals across the market’s information genome
(3 ¢7). Generally, these latter investors are the late stage entrants to a mature
“winning strategy” theme diffusion. By positioning early and selling into this
“bid market” we are able to generate exceptional returns for our clients.

So where to start? Well before beginning let us at first, by way of an aside,
draw to our readers attention a definitional issue whose demarcation was a
necessary evil in the theoretical underpinnings to this book but whose treat-
ment is nevertheless somewhat different here in the applied world. What
we are referring to is the definition of an “analyst” and the concurrent
definition of a “strategy.” As we have highlighted upon numerous occa-
sions so far, in the applied sense we treat analysts and investors as one and
the same. That is, investors typically conduct some sort of analysis as part
of their necessary due diligence prior to investing. Indeed, this is the case
even if investors choose to “outsource” the analyst role as they must at first
“analyze the analysts” from whom they seek advice.! Subsequently, trad-
ing strategies/investor strategies/analyst information producing strategies all
fold into the one comprehensive strategy set under the auspices of our
applied interpretation of Evolutionary Finance principles. Differentiating
between the various trading/investor/analyst substratum was a necessary
evil for developing a comprehensive model of marketplace ecology - as we
have presented in Chapters 5 and 6. Now however, we are once more able
to fold all such strategies into the same preconceived strategy universe so as
to give a much more comprehensive range of strategy options from which to
“prey” upon.

Still, all this is not necessarily telling you how Natural Selection™ actually
works in such an “adaptively predatory” fashion. To do this, we will start

1 That said, as for as those investors who internalize the analyst role, they still
essentially reveal their coveted private information to the wider market as they
“signal” through the price mechanism - as consistent with the theoretical modeling
by Hayek (1995) and more recently by Green (2004) and Chakravarty et al. (2004).
Indeed, Brommel (2003) has argued that small privately informed traders can improve
their returns by spreading rumors after they have established a position. Such actions
augment their initially muted asset price “signaling impact.” In fact, most applied
investment styles — like our own “adaptively predatory” method - rely upon an essen-
tial second phase of others rushing into a particular investing (strategy) thematic after
you are already set. We however use upstream memetic signaling to determine the
extent to which a particular investment theme (the actual embodiment of which is
represented by a “winning strategy”) is in its ascendant or maturing phase.
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by presenting a crash course in Evolutionary Algorithms. Why you might
ask? Well, as anyone who has even the slightest amount of tuition as to
the basics of Number Theory will soon testify, what we are proposing by
way of implementation of our Evolutionary Finance principles (at least from
the applied perspective) is not an easy task. Take for instance the dimen-
sionality of our information categorization and sorting problem. This is a
massive undertaking if we are to truly ascertain the key memetic sequences
that determine every potential strategy’s performance across a potentially
large preconceived strategy universe. This is simply because there will be a
near infinite array of possible informational sequences presented to us for
each and every strategy’s performance within such a universe from the con-
tinuous stream of financial information that besieges the market every day.?
This “dimensionality problem” is made even worse when one considers that
we are (somewhat ambitiously) about to embark upon a full decade’s worth
of out-of-sample backtesting across nearly one hundred highly liquid assets
as screened by 36 preconceived strategies and over the very fine granularity
of a daily data periodicity. Such are the onerous requirements to display the
overall efficacy of our method.

To put the magnitude of this potential problem into context, one should
remember that decoding the human genome - a problem of somewhat
commensurate size — took a considerable portion of the world’s computer
processing power many years to unravel. Obviously, we do not have the
same resources (or time) at our disposal here so there is no way that we can
feasibly undertake an identical process for divining the memetic code for
upstream indicators of “winning strategy” emergence across a comprehens-
ive range of assets. Subsequently, it was incumbent upon us to develop a few
“tricks” along the way to cut down both computational time and expense
in making any implementation of our Evolutionary Finance principles eco-
nomically feasible.® Ergo, it is for this reason that we dive headlong into the
relatively difficult area of Evolutionary Algorithms in the first section of this
chapter - if only to provide the reader with the necessary background for
what is about to follow.

In particular, the assumed prerequisite knowledge level for our discussion
in Section 7.2 — where we provide some intimation as to our own adaptations
to Evolutionary Algorithms - is unfortunately quite high. In this section we

2 For example, given just 20 information “bytes” spread across a specific day (which is a
very conservative assumption when running a global portfolio) implies that there are a
massive 2,432,900,000,000,000 different memetic permutations from this information
alone. Adding but one additional day has a geometric rather than arithmetic scalar
impact upon this figure so it is easy to see how very soon the dimensionality problem
becomes absurdly large when using a Bayesian trading rule technique to determine the
key memetic strings governing a particular strategy’s performance.

3 Indeed, solving this riddle is part of the justification for the patent application
underlying our new investment process.
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outline precisely how our proprietary (bioinformatics based) adaptations to
Evolutionary Algorithms provide both a time and cost efficient mechanism
to discern the all-important key memetic sequences that, in turn, provide us
with leading indicators as to winning strategy emergence across a select range
of assets. By way of background, these specific adaptations have been protec-
ted via patent and were painstakingly built up within the Natural Selection™
software platform over a number of “man years.”

As will be seen in Section 7.2, one of the true beauties of this software’s
output is that it is able to tell you the fundamental significance of a particu-
lar “byte” of information. For example, we all know that a US GDP release is
an important piece (“byte”) of information for market participants to closely
monitor when it is released — but precisely what assets and strategies is it
important for and (even more importantly) when does it have more inform-
ational impact (II) significance? Is this II significance heightened by the fact
there may have been a Consensus analyst upgrade of the GE equity stock a
few weeks earlier? If so, what assets does this apparently emergent “winning
strategy” meme benefit (your potential longs) and what assets does it impinge
(your potential shorts)? What is the particular “winning strategy” itself?
What else needs to fall into place for this meme to emerge into a particular
“winning strategy” theme and for the all-important “2nd Phase” late cycle
entrants to appear on the scene and bid into the market? Indeed, even if such
a “winning strategy” theme were to emerge, will it ultimately grow into such a
force that via contagion effects it will eventually cause a swing in overall mar-
ket sentiment? All such crucial (albeit stylized) questions are eternally asked
by market participants over the course of any given trading day and (unfortu-
nately) most go unanswered simply because (up until now at least) there has
not been a framework for understanding how the various microcomponents
of information necessarily bolt together into a structured entity.*

As we have laboriously outlined in the preceding six chapters, this is cer-
tainly not the case with our highly detailed Evolutionary Finance investment
process. Our Natural Selection™ software platform was designed from “the
ground up” to specifically leverage from these Evolutionary Finance prin-
ciples. In fact, one of the pivotal features that we have found in our modeling
work to-date has been the software’s uncanny ability to bring to light seem-
ingly innocuous information bytes that form a key component of a particu-
larly strong meme that affects not just one, but a plethora of strategies across
a vast range of assets. As mentioned at the very start of this book, it is within
this erstwhile overlooked (but nevertheless pivotal) information that much

4Indeed, it is this “structured information” approach that differentiates our
bioinformatics-based adaptations to Evolutionary Algorithms from what are known
as “data mining” techniques that traditionally have no concept as to overall inform-
ation structure in their search for (at times nonlinear) associations between various
arrays of data.
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of the potential for the generation of exceptional returns necessarily resides —
especially for absolute return managers (like ourselves) whose mandate allows
them to invest (both long and short) across a diverse array of assets.

Indeed, it is toward the pursuit of such exceptional returns under the abso-
lute return banner that forms the basis of our case study example — which
happens to constitute much of the empirical analysis that will be presented
in this chapter. In particular, we will take the reader through the proprietary
asset selection process adopted by Natural Selection™ in its screening of pos-
sible investment opportunities within the Global Macro Hedge Fund space -
and along the way, we will no doubt highlight some of the capabilities of
this exciting new software.> To prove how well this proprietary investment
process works, we will document a full 10 years of out-of-sample backtesting
of the performance of the Natural Selection™ platform’s investment recom-
mendations. Before doing so however, we will at first illustrate how Natural
Selection™ can be used to identify the constituents of any asset’s memetic
structure — as represented by an informational radix — as well as how this
principle can be used to develop upstream indicators of “winning strategy”
rotation. Furthermore, consistent with our discussion in Chapter 6, we will
identify the drawdown risk characteristics associated with the appearance of
certain predicted “winning strategies” — as developed under our proprietary
EVaR technique. Finally, we put all of the above risk/return characteristics
together to build an optimal (absolute return directed) evolutionary port-
folio for a Global Macro Hedge Fund mandate and, as mentioned above,
illustrate 10 years of out-of-sample backtesting of our “adaptively predatory”
investment style. Needless to say, all this would not be possible were it not for
innovative investment process detailed extensively in the preceding Chapters
1-6 and our library of patented algorithms that we have developed within
our Natural Selection™ software platform. So, without further adieu, over to
the basics of these particular algorithms.

7.1 A primer on Evolutionary Algorithms

As stated in our introduction to this chapter, Natural Selection™ draws
heavily upon the class of solution procedure known as “Evolutionary

5 In terms of our selected macro asset database for our chosen simulations, we opted for
50 of the world’s most liquid futures contracts — as illustrated by daily open interest —
covering equity indices, bond indices, interest rates, hard commodities and FX. Like-
wise, we chose the most liquid Exchange Traded Funds (ETFs) — as demonstrated by a
daily turnover in excess of $US 5 million — which covered specifically equity indices
(both sector and country allocations). In total, our asset universe comprised 84 macro
assets across a diverse geographical array of exposures from Asia to North America
to Europe and the Emerging Markets. In general, such a database should be looked
upon as being consistent with most “Global Macro” Hedge Fund mandates — with the
obvious exception of having a bias toward the “equity” asset class.
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Algorithms” to discern the memetic structure of the market’s informational
genome. Obviously, this raises the issue of precisely what are “Evolutionary
Algorithms” per se (at least for those as yet uninitiated in the black art of neural
network modeling). Without overwhelming the reader too much by way of
literature overview, we thought it appropriate to provide at least a cursory
introduction to this body of thought before we outline the bioinformatics-
based algorithmic reasoning underlying the Natural Selection™ software
platform itself.

So what are “Evolutionary Algorithms”? Evolutionary Algorithms are non-
linear programming techniques based upon the principles of nature — in
particular: natural selection; evolution; and genetic principles.® Typically,
two questions arise when market practitioners are at first confronted with
the concept of an “Evolutionary Algorithm.”

1 Why are such algorithmic processes typically referred to as being
“nonlinear”?

2 Second, how does the “Evolutionary” component within an Evolutionary
Algorithm actually work?

We will answer both questions respectively. To start with, why are
Evolutionary Algorithms typically nonlinear? Well, such nonlinearities
traditionally stem from the presence of feedback between dependent and inde-
pendent variables as an Evolutionary Algorithm actively “searches” for an
optimal solution. As discussed in Chapter 3, the study of Complexity Theory
has highlighted that many of the dynamics exhibited by financial markets
can be argued to be fundamentally deterministic/nonlinear in foundation.
Indeed, our own concept of memetic information (M) as opposed to sin-
gular information (E) and the entire premise of informational impact (II)
is founded on the presence of such ubiquitous nonlinearities. Evolutionary
Algorithms offer a nice solution mechanism for attempting to identify such
principles as they require little by way of prior knowledge of the precise
functional form of such relationships from the users initial standpoint.”

In the past, it has been the realization of the pervasive presence of empirical
nonlinearities in the financial arena that (although a realistic base-case
assumption) has presented many a problem for applied finance practitioners.
For example, the link between the equity market and the larger economy
appears to be a classic nonlinear form. In short, to model the economy

6 The link between biology, mathematics and even computer science has a surprisingly
long history. For example, Wolfram (1986) discussed the principles of cellular auto-
mata and Complexity Theory. Indeed, von Neumann (1966) discussed self-replicating
biological-like systems of artificial life inside a computer.

7 This in particular, is an endearing feature of this class of algorithm as it in part
overcomes some of the earlier stated implementation problems surrounding Chaos
Theory - see Chapter 3 for more details.
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you need a purview on the equity market but before you can form such
an opinion, you need an opinion on the economy. Catch-22? Precisely. In
fact, even if you were to undertake a pre-emptive strike against such recursive
logic by forming a “base-case” economic scenario and (hopefully) empiric-
ally iterating your way out of trouble you would still encounter problems. For
example, “what is the correct specificity of the nonlinear functional form for
your model,” “what is the relative importance of various economic indicat-
ors within such a context and how should this relative importance evolve
through time,” even notions as simple as “what are the best indicators to
choose” can at times comprise a major headache for quantitative model-
ers in this extremely problematic branch of empirical analysis known as
“nonlinear econometrics.”® Thankfully, Evolutionary Algorithms have man-
aged to overcome many of these difficulties as they (adaptively) make many
of these difficult decisions upon their own accord - thanks to their innovative
(feedback directed) algorithmic structure. Subsequently, quite often an Evol-
utionary Algorithm represents a far more suitable nonlinear foundation for
model building (at least from the practitioners perspective) simply because
it is purposefully designed around the premise of (generally nonlinear) feed-
back to ascertain an optimal solution to a given problem. This represents a
“nice fit” with the theoretical foundations of Evolutionary Finance that we
have provided to date.

Next, how does the “Evolution” component within Evolutionary
Algorithms actually work? As stated earlier, Evolutionary Algorithms have at
their heart the principles of recursion and feedback but hand-in-glove with
these principles go the concepts of “natural selection” and “survival of the
fittest” too. Why? It is the presence of such principles — at least, in a mathem-
atical form - that acts as an iterative screen for the most suitable (generally
nonlinear) solution to a given problem. In other words, “natural selection”
and “survival of the fittest” are the problem solving “filters” embedded within
any Evolutionary Algorithm. It may be that these general principles date back
to the 1800s — 22 November 1859 to be precise — but their logic is so powerful
that they constitute a convenient way of deriving an appropriate response to
pressing present day problems that investors regularly encounter (especially,
when such logic is coupled with modern computing power).® By mathemat-
ically formalizing a natural selection process of various “mutated” possible
solutions, Evolutionary Algorithms are able to repetitiously search for the
best possible outcome (thanks to the principle of the “survival of the fit-
test”) to many an applied finance conundrum - irrespective of its functional

8 For an extensive discussion of these methods, refer to Mills (1993), Alexander (2001)
or the thoroughly comprehensive Hamilton (1994).

9 22 November 1859 was when Charles Darwin’s “Origin of Species” first went on sale.
1250 copies of this first edition were printed and were almost entirely sold on the first
day of release for the princely sum of 15 shillings each.
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form, indicator set or even the periodicity of the underlying relationship.
Needless to say, there is little wonder as to why such algorithmic processes
are now being exploited by an extensive array of proprietary trading desks
and quantitative-based absolute return managers from around the globe.

So now that we have sold you on the idea, what are the various forms
of Evolutionary Algorithms from which you can choose? Below we briefly
detail a number of the more common Evolutionary Algorithm classifications
and, where appropriate, place them within the context of our own Natural
Selection™ software platform. Still, given space limitations and the specialist
nature of this field, our coverage of the specifics of these particular algorithms
will be by no means comprehensive. Interested readers are therefore referred
to the ample number of excellent texts in the area — such as Goldberg (1989),
Beale and Jackson (1990), Caudill and Butler (1992), Holland (1992), Peretto
(1992), Muller et al. (1995), Refenes (1995), Beltratti et al. (1996), Mitchell
(1998) and Coley (1999). All these references will provide an excellent embel-
lishment to the various principles that will be presented here.'® One caveat
however is that readers wishing to delve further into this field should be
aware of the at times confusing definitional basis within the literature at
hand. This is especially the case when it comes to differentiating between
the various sub-stratums of the Evolutionary Algorithm family. Indeed, even
we —with considerable background in the area — found this definitional incon-
sistency confusing at first. Still, we have done our best to decipher most of
the commonalities between contrasting definitions so hopefully the brief
summary next will provide readers with a good grounding as to the basics of
this exciting emergent modeling field.

Evolutionary Programming

This particular facet of Evolutionary Algorithms focuses most intently on
the “natural selection” aspects of the evolutionary process. A nice example
of these algorithms at work is the Adaptive Belief System (ABS) proposed
in a series of papers by Brock and Hommes (1997a,b, 1998, 1999) — which
also happen to fall under the bailiwick of “artificial models of the mar-
ket” as described in Chapter 3.!! In short, Evolutionary Programming is

10 Also, should one want an introduction to Evolutionary Algorithm and Neural
Network code examples, we recommend readers see Rao and Rao (1995) and Steeb
(1999).

1 Indeed, it could be argued that these models could also be classified as being sym-
pathetic to the Behavioral Finance literature as Brock and Hommes Adaptive Belief
System (ABS) is consistent with Sargent’s (1993) earlier theoretical work on the concept
of “bounded rationality” — and indeed Arthur’s (1990) even earlier computational
representation of this concept. Ultimately, underlying the principle of the Adaptive
Belief System is a “minority game” where individuals are assumed to improve their
decision-making by learning the outcomes of their past actions. It is important to
recognize that such Game Theoretic foundations are not consistent with our earlier
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an iterative procedure where alternate solutions to a (generally nonlinear)
problem are sequentially put forward to some time-variant (adaptive) screen-
ing procedure — a simple example of which is an “error correction” mechan-
ism. It is by making successive changes to the format of this adaptive filter
(which, importantly for our purposes, can be Bayesian in foundation) that the
best possible solution to a given problem is found.'? Hence the strong affinity
between Evolutionary Programming and the process of “natural selection” as
in effect, “Mother Nature” makes successive changes to the “adaptive filter”
of an organism’s genetic code in the refinement of species.

When conducting Evolutionary Programming, it is important to note that
the input parameters fed into the adaptive filter are typically encoded in
binary form with each possible “solution” represented as a binary string.
This encoding — which happens to be thoroughly sympathetic to the encod-
ing of information into “manageable” signals as described in Chapter 4 —
substantially speeds up the computation time associated with ascertaining
the best possible solution. Furthermore, such encoding is a “natural fit”
with the principle of Bayesian trading rule analysis — which again, suits our
purposes immeasurably.

Needless to say, given our chosen nomenclature for our proprietary soft-
ware platform — Natural Selection™ — which embodies a series of algorithms
that have been designed specifically to decipher the market’s information
genome, we somewhat unsurprisingly draw heavily upon both encoding and
Evolutionary Programming principles in our bioinformatics-based approach
toward financial markets. That said, unlike most past approaches in the
Evolutionary Programming field, we use a far more comprehensive (micro
informational building block) “structured” encoding of information in our
own proprietary search procedure which - importantly - is fundamentally
“out-of-sample” ex ante rather than ex post in perspective. Furthermore, we

discussed Evolutionary Stable Strategy (ESS) based Evolutionary Games as minority
games (at least in part) rely upon reputations being built between ¢ to t + 1 whereas
within Evolutionary Game principles the changing “rules of the game” preclude such
reputations being built — that is with the exception of our own Evolutionary Game
format where “reputations” are formed via the actual format of an analyst’s information
byte production.

12 An alternate tact to this is by successive changes (mutations) to the format of the
sequence of the input parameters themselves and holding the filter constant. Ulti-
mately the choice of which direction to proceed depends upon the structure of the
problem at hand. We generally find that altering the filter (rather than the binary
string “solution”) works best for testing the Bayesian foundations of memetic strings
that help predict the emergence (and subsequent maturing) of preconceived strategy
sets. Earlier work on Evolutionary Programming — see for instance Fogel et al. (1966) —
used a random mutation process as part of the solution procedure. However we gen-
erally find such approaches unnecessary given the foundations of the out-of-sample
memetic string search problem.
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also explicitly consider the signaling from the wider information-set along
with the order of arrival of each information byte as an important factor in
discerning the key memetic sequences along the market’s informational gen-
ome. We feel these adaptations to traditional Evolutionary Programming
techniques makes our approach much more robust and certainly given our
ex ante perspective, considerably more easy to implement from the practi-
tioners standpoint as we rely less upon backward-looking “error correction”
in making our adaptive filter adjustment and more on the forward-looking
“structured information” fabric of the current signaling from the market’s
informational genome in deriving an “optimal solution” investment pro-
jection. As a consequence, portfolio drawdown is typically less using our
“adapted version” of Evolutionary Programming principles than is tradition-
ally the case with standard Evolutionary Programming techniques and this
is one major appeal of our proprietary approach.

Evolutionary Strategies

Important too for the final recommendations of Natural Selection™ are the
principles of Evolutionary Strategies. These algorithmic code structures con-
tain most of the underlying elements of Evolutionary Programming but here
the focus is mostly on using preexisting sequences of information (in our
case, preexisting strategies) rather than the (potentially randomized) mutated
search for any particular arbitrarily defined binary string solution to a prespe-
cified problem.'? Indeed, this particular facet of Evolutionary Algorithms fits
nicely with the Evolutionary Stable Strategy identification and subsequent
Evolutionary Portfolio Construction attributes of our Natural Selection™
software package. How is this the case? Well, for starters we are using preex-
isting strategy sets common throughout the marketplace — such as valuation
strategies, economic strategies, technical strategies and behavioral strategies —
as part of our raw information input.!* Next, the binary encoded inputs that
are loaded into our ex ante adapted version of an Evolutionary Program are
in effect “strategies” themselves — at least in the sense that we use the payoffs
from the various permutations of Bayesian trading rule strategies to discern
the key memetic sequences along the market’s informational genome. Once

13 Note, this is not to say binary strings are not used for deriving the solution to Evol-
utionary Strategies. Indeed, the strategies themselves are typically encoded as binary
strings — so an “evolutionary strategy” is simply a time-variant version of a binary
string. Rather, the original format of the string itself is generally prespecified. This
illustrates just how useful binary notation can be from a computer programmer’s
perspective — especially in cases such as ours where it has proven to be extremely
flexible in specifying the format of both the “information structuring” problem and
subsequent solution to this problem as well. For a discussion of the various methods
of information encoding using binary strings, refer to MacKay (2003).

14 See our Glossary in Appendix 1 for an exposition of some of the more frequently
encountered forms of these strategies.
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these key memetic sequences are found, they can then be easily used to
identify the predictive success (and failure) of any preexisting strategy so
that an overarching sequence of preexisting strategies can be put forward as
a “solution.” This “sequenced strategy” solution approach is generally con-
sistent with Maynard-Smith’s concept of an ESS. It is the representation of
this ESS as a (purposefully mutated) binary string — which interestingly feeds
off the signaling from the memetic encoded binary strings — that makes
our general approach consistent with Evolutionary Strategy/Evolutionary
Programming principles.

As we stated in Chapter 6, both investors and analysts typically use
preexisting strategies to implement their ideas — but unfortunately most
such strategies are static. By “moving upstream” in the information flow
and identifying the early stage information byte signals that highlight the
formation of a particular meme or theme that will cause a particular preex-
isting strategy to fail while for another to succeed we can effectively “prey”
upon the fallibilities of others. We label this combined Evolutionary Pro-
gramming/Evolutionary Strategy approach as “adaptively predatory.” Our
objective in adopting such a stance is simple — we aim to position “long” into
preexisting strategies at the early stages of their inevitable theme diffusion,
while at the same time looking to “short” those strategies at the mature stage
of their life cycle which have a high probability of “strategy failure.”!> To do
this, we use the key memetic strings identified by our adapted Evolutionary
Programming Bayesian “strategy” screening technique to identify a partic-
ular preexisting strategy’s informational drivers. Doing so helps us to build
up a much better picture of the overall informational environ - including
importantly, other investors responses to such an environ.

Subsequently, Natural Selection™ is able to give its investment recom-
mendations not just in terms of a simple “buy” or “sell” signal for a given
asset but also in terms of which preexisting strategy from a given strategy
set — valuation, economic, technical or behavioral - is likely to be the key
strategy driver determining this asset’s performance over a given invest-
ment horizon. How do we determine which assets to choose from the
array of recommendations put forward by Natural Selection™? In part this
relies upon a proprietary “strength of signal” screening device to determ-
ine which memetic signals we have the most confidence in, however it
also relies upon how each asset interrelates within an overall portfolio

15 It is a well-known fact that no alpha-generating strategy works forever as incumbents
soon “bid the alpha” out of a given winning strategy idea. Commensurately, certain
“winning strategies” tend to comef in and out of favor over the course of time —
style investing (growth versus value investing) being a natural case in point. Natural
Selection™ is able to take into account such inevitable strategy longevity in forming its
investment recommendations through a combination of its “structured information”
approach toward discerning the market’s informational genome and the fact that it
uses preexisting strategies as part of its raw data input.
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structure — as determined under the auspices of our Evolutionary Portfolio
Theory (EPT) technique.

As stated earlier, by taking such an evolutionary perspective on the
emergence, maturation and failure of successive “winning strategies,” our
approach is highly sympathetic to the concept of an Evolutionary Stable
Strategy (ESS) as espoused by John Maynard-Smith (1982). That is, we develop
an overarching “sequence of strategies” perspective which are fundamentally
conditional upon the responses of others. Indeed, it is from such ESS formu-
lations that Natural Selection™ is able to give an approximation as to what
is the optimal forward looking set of time-variant weights that needs to be
applied to each asset within a select universe under EPT principles. Such prin-
ciples necessarily apply as we are taking into account the inevitable “theme
diffusion” of a particular “winning strategy.” Furthermore, such a facility also
helps to minimize drawdown risk as we are able to identify those key memetic
sequences that are likely to result in “strategy failure.” This “strategy failure”
can at times be the catalyst for market “events” — as evidenced by the demise
of the Yen carry trade and the LTCM Cirisis. Consequently, this approach
(while complex) is far superior, we believe, to most static “forward looking”
portfolios construction/risk management techniques that are presently being
used today.

Genetic Algorithms

Like Evolutionary Strategies, Genetic Algorithms at times contain some of
the “adaptive” aspects of Evolutionary Programming but the core compon-
ent of any Genetic Algorithm remains its focus on the “seeding” of random
inputs into each generation (iteration) of solutions in an attempt to select a
“best of breed” group of survivors — and subsequently “crossing over” these
survivors at each generation by the “interbreeding” winning pairs.!® It is this
Darwinian “survival of the fittest” selection mechanism - as hybrid “best”
solutions effectively compete against each new generation of randomized
“mutant” inputs - that forms the basis of a Genetic Algorithm's solution to a
particular problem. One appealing by-product of this structure is that unlike
Neural Networks (see the following box) and (to a lesser extent) Evolutionary
Programs, Genetic Algorithms have less potential to be convergent toward
any singular local solution to a particular problem. This is primarily because
of the random seeding of alternate solutions embedded in each iteration
(generation) within the algorithm effectively knows no bounds and is thus
less dependent upon the “initial conditions” of a given solution that has
already been achieved by the algorithm. This “initial condition” problem is
endemic in recursive programming techniques - as discussed in our critique

16 This particularly useful insight as an adjunct to the algorithmic solution search
process has been attributed to the earlier work by John Holland - see Holland (1974).
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of optimizers in Chapter 6 — and has (at times) been a major hindrance limit-
ing the uptake of nonlinear programming techniques by practitioners in the
past.!” Indeed, to their distinct advantage, quite often a Genetic Algorithm
will suggest multiple solutions to a given problem that matches the multiple
existence of localized maxima or minima — an outcome that most traditional
recursive nonlinear solution procedures find hard to achieve.!®

That said, there are drawbacks in using Genetic Algorithms that practi-
tioners should consider. First and foremost is the fact that random mutation
and hybridization of possible solutions can at times result in nonsensical
results — especially when one is using preexisting strategies as a compon-
ent of raw data input. Hybrid strategies such as ;P/E Relative valuation/}
Head & Shoulders technical/ 2 US GDP economic factor weighting may have
little a priori rationale as a clear driver of a certain asset’s performance.!®
Furthermore, like standard Evolutionary Programming techniques, Genetic
Algorithms tend to be backward looking in the sense that they attempt
to fit the best solution (via the mutation of various possible outcomes)
at each time t and then extrapolate this solution to time t + 1. Implicit
in this is the belief that what works today, will work tomorrow whereas
those who have been at the coalface of global markets know, such assump-
tions are at best “heroic” and at worst downright dangerous. Given this
circumstance, the random mutation and hybridization of possible solu-
tions at each time t may actually contribute to instability in the model’s
prediction output — thus resulting in excessive transaction costs. Indeed,
our own proprietary work in this area proved this to be exactly the case -
hence our preference for the more stable ex ante (forward looking) adapted
version of an Evolutionary Programming/Evolutionary Strategy algorithm for
our bioinformatics-based approach toward financial markets.?’ In fact, it is

17 Further, Genetic Algorithms also have less potential to be affected by the presence
of outliers that tend to pull Neural Network solutions away from what is ultimately
the correct steady-state solution path.

18 This allowance for multiple local minima (or maxima) in Genetic Algorithms does
enable the better approximation of catastrophic localized events that tend to get “aver-
aged out” in a Neural Network solution — a nice attribute not only for biological
modeling but financial modeling as well.

19 This is even more the case when one is using pure index price series as raw data
inputs as here the problem becomes one of “spurious technicals” —a mélange of varying
momentum observations — driving the “solution” to asset price performance predic-
tion. The danger in these circumstances is that the procedure itself may become little
more than a data fitting exercise and one can place little faith in the out-of-sample
forecasting ability of the Genetic Algorithm.

20Indeed, the presence of excessive transaction costs is a criticism often leveled at
earlier empirical attempts under the “Evolutionary Finance” banner as adopted by Hens
et al. (2002) and Dempster and Jones (1999a,b,c, 2000, 2001) — see the next subsec-
tion for more details. That said, our own purview on Evolutionary Finance overcomes
the excessive transaction cost shortcoming through our comprehensive modeling
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primarily this forward-looking “structured information” adaptation toward
Evolutionary Programming/Evolutionary Strategy techniques that differen-
tiates our own implementation of Evolutionary Finance principles from
the largely Genetic Algorithm/Genetic Programming based “Evolutionary
Finance” studies of the past.

Genetic Programming

Genetic Programs are inherently similar to Genetic Algorithms in that they
focus on the random “seeding” of different possible solutions into each
successive population of possible outcomes (with only the best results sur-
viving into the next iteration) but importantly they also differ from Genetic
Algorithms in one key respect. Genetic Programs allow the sequence (or
“string”) of possible solutions to vary in number. This may not sound like
much but ultimately it adds yet another dimension to the range of possib-
ilities in the search for the best possible solution to a particular problem.
For example, should one rely upon four (binary) signals or five from a given
population of inputs? Such a question is typically answered with sophistic-
ated filtering or autoregressive techniques in standard econometric analysis
but they are also nicely covered by Genetic Programming too. In fact, as
mentioned earlier, a considerable portion of the earlier work done under
the “Evolutionary Finance” banner utilized this particular form of nonlinear
modeling - see for instance Dempster and Jones (2000).

As cited upon in numerous occasions in this book, we have always
sought to leverage from the principle of “standing upon the shoulders of
giants” and in this case part of our own adaptations to the Evolutionary
Programming/Evolutionary Strategy class of algorithms explicitly allows for
the binary string of any proposed “solution” to vary in length - hence (at
least in part) following in the footsteps of “Evolutionary Finance” Genetic
Programmers of the past. Indeed, this feature was crucial in allowing the
explicit consideration of the order of arrival of information as part of our
overall solution mechanism. Without such an appendage, we would not
have been able to bring our own adaptations to Evolutionary Programming/
Evolutionary Strategy algorithms that much closer to the type of code struc-
tures used in the bioinformatics sphere and thereby move the concept of
“Evolutionary Finance” closer to the “structured information” realm.

of the microfoundation building block structure of financial information — with the
most readily identifiable embodiment of this in the applied sense being — the ex ante
adjustment appendage to existing Evolutionary Programming/Evolutionary Strategy
techniques. Here, we have the advantage of not only explicitly considering how the
various subcomponents of information necessarily “bolt together” but also we take
into account the order of arrival of information as an integral feature of our solution
procedure.
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Memetic Programming

Finally, let us briefly touch upon Memetic Programming techniques — one
of the more recent introductions to the emergent field of Evolutionary
Algorithms. In essence, Memetic Programming adds yet another dimension
to Genetic Programming in the sense that it explicitly allows for separate
local randomly seeded searches to be conducted in parallel before the vari-
ous “populations” of “optimal solution” results are then recombined and a
final “best of breed” is selected for each new generation.

Here — consistent with our earlier discussion of Professor Richard Dawkins
(1976) concept of memes - it is the association between binary inputs that is
explicitly considered as an additional input into the “best of breed” solution
screening process. In short, those local “optimal solution” results with the
best associations with other local “optimal solution” outcomes generally have
the best chance of being accepted as the “best of breed.” Subsequently, their
survivorship through each of the successive generations (subject to the ran-
domized onslaught of the seeding of alternate solutions) is generally greatest.
While on the surface this approach may appear to be ideally suited to our own
“structured information” based purview of Evolutionary Finance, one of the
major drawbacks of this particular algorithmic structure from an implement-
ation standpoint is that (like Genetic Algorithms and Genetic Programming)
such algorithms periodically result in excessively “noisy” output. Yet again,
this fallibility is instigated by the random seeding of possible solutions at
each new generation and translates into excessive transaction costs for the
practitioner. That said, further refinements to this relatively new type of solu-
tion procedure should be closely monitored as the overall structure of the
approach looks quite compelling — indeed, a nice example of this form of
iterative solution technique can be found in Hart (2003).

Neural networks: The most ubiquitous form of nonlinear
programming technique

Neural networks: The basics

When most people think of nonlinear programming techniques, Neural Networks
generally spring to mind. So what are they precisely and how do they differ from
Evolutionary Algorithms? In short, Neural Networks are mathematical models
developed to replicate the information processing of the human brain. Intuit-
ively these models are appealing from the financial modelers perspective because
they process raw information in much the same fashion that the human brain
responds to a given set of stimuli. What precisely does this mean? Well, at first
there is a cognitive search by a Neural Network algorithm (using encoding and
categorization) for associative patterns within interdependent information. Then,
the Neural Network typically uses a trial and error type of process (mathematic-
ally, this is known as backpropagation) to search for an optimal solution to a given
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problem.?! This sequence of information processing replicates the pattern adopted
by the human brain as it seeks to determine the most appropriate response to
a given set of information stimuli (such is the process of “learning” as we have
described in Chapter 4).

The beauty of Neural Networks from a market practitioner’s standpoint is that not
only do they provide a framework that allows for investors to effectively identify
what are the important factors in driving a particular asset’s price performance, but
they also allow for such a system to be adaptive. In other words, the functional form
of a solution to a Neural Network problem is nonconstant over time. In particular,
the weighting applied to alternate information sources can change between the
months and years over which a Neural Network is run. Even the specificity of the
constituent information sources that comprise the “optimal solution” to a Neural
Network problem can alter across time.

This contrasts with traditional nonlinear time-series econometric modeling
where the approach is to at first assume what the key factors are in driving a par-
ticular asset’s price performance and then to assume what is the most appropriate
function form for the econometric model to take. Neural Networks typically require
no such assumptions. Instead, they allow the data to “speak for itself.” In this sense,
Neural Networks:

are non-parametric, nonlinear estimators of financial data that require little to
no prior assumption about functional form, sign or the weighting that should
be given to a set of independent variables in determining a dependent variable

These are fundamentally nice attributes of the Neural Network modeling technique.

That said, strong models that make strong assumptions about the interaction
between dependent and independent variables are generally superior to Neural
Network forecasting when the underlying relationship between a set of variables
is unquestionably known. However, strong models also suffer from the significant
fallibility of inducing a considerable degree of bias into the modeling process when
the underlying relationship between the dependent and independent variable is
less well understood — as is often the case in financial markets. In this sense, the
data driven foundations of Neural Network techniques are perfectly suited to the
ever-changing nature of an adaptive investment process where the relationships
between dependent and independent variables are constantly evolving thanks to
the relentless flow of market information.

Neural network design
To start off with, let us concentrate on the physiological aspects of the human

brain’s information processing. As partly mentioned earlier, upon receiving
an information “signal” the human brain immediately seeks to encode all

21 Whether this trial and error process is formalized in the form of a sigmoid function
(as is generally the case in backpropagation) or alternately is simply the outcome of the
training process (which is the case when no explicit backpropagation layer is present)
depends upon the whims of the programmer.
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interdependent information and then to categorize it. This task is performed (at
the smallest operational scale) by neurons. Neurons consist of: (1) a cell body;
(2) branching extensions for receiving information (called dendrites); and (3) an
output channel (called an axon).

Information (in the form of electrical impulses) are collected by the dendrites and
channeled to the synapses - if you like, a “bridge” over which information deemed
to be relevant (i.e., if the information signal is of sufficient strength) will flow. It
is the task of the synapse to effectively sum the information and if the combined
strength of the information exceeds a certain threshold a reaction signal is on-
sent to the axon via a chemical/electro transmission mechanism. In doing so, the
original information undergoes a type of transformation as what is sent along the
axon is an interpretation of the original information provided by the dendrites. If
this interpretation is deemed to be “appropriate” or “correct” the chemical weights
applied to the original information at the (synaptic) threshold level are memorized
and the brain has effectively rote “learnt” a new signal/response. This is human
learning at its most primal physiological/neurological level.

So how does all this relate to Neural Network algorithms? In short, it is useful
to think of a Neural Network algorithm as essentially replicating this three stage
process of information transformation. A group of interdependent data is amassed
by the prospective modeler in much in the same way that dendrites collect signals
within the human brain. However, for our purposes, the final transformation of
this information is already known — at least in an ex post sense — as it is represented
by the market price of a chosen asset. It is therefore the task of the Neural Network
algorithm to solve stage 2 of the process — input is known, output is known but how
to determine the appropriate threshold weights so that only the correct information
signals are identified as to the true determinants of an asset’s price?

What a Neural Network algorithm does to overcome the problem of appropriate
threshold weights is to use an error correction mechanism to determine the most
effective set of weights to apply to the raw data input so that the forecast output
price is as close as possible to what is actually observed in the real market. In doing
so, the weights applied to the particular data in question must be sufficient enough
so as to solicit an appropriate response when the market price changes but not to
solicit a response when the market price is static.

Mathematically, the objective of the Neural Network algorithm is to minimize
the total error in the predictive capability of the threshold response function over
a chosen timeframe of data. As displayed in Figure 7.1 it does this by iteratively
setting alternate weights to the raw data input using a “trial and error” type of

The Human Brain A Neural Network algorithm
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Figure 7.1 Information processing by the human brain and by a Neural Network
Algorithm
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process (or backpropagation as it is known in computing lexicon). Neural Network
models then choose as a “solution” the set of weights with the minimum total
error value.?? It is this “adaptive filtering solution” technique that makes Neural
Networks highly sympathetic to Evolutionary Algorithms (especially Evolutionary
Programming/Evolutionary Strategy) procedures.

Neural Networks and Evolutionary Algorithms:
Commonalities and differences

Neural Networks differ from Evolutionary Algorithms primarily in terms of
algorithm design. Both Neural Networks and Evolutionary Algorithms use a recurs-
ive error correction mechanism to discern a total minimum error solution to a given
informational problem, but where these approaches differ is basically in terms of
how this total minimum error solution is found.

e For Neural Networks, the total minimum error solution is found by setting the
correct levels for the threshold function — which effectively “filters” raw input
signals for the correct (minimum error) response output and sets the input
weights accordingly.

To contrast, Evolutionary Algorithms use a variety of (evolution based) principles
to discern the total minimum error solution to a given problem.

e For Genetic Algorithms/Genetic Programming this entails randomly “seeding”
alternate (weighted information input) solutions at each iteration of the
algorithm and then selecting the “best of breed” (those solutions with the lowest
total minimum error) as “survivors” to the next iteration.

e For Evolutionary Programming/Evolutionary Strategy selection, the contrast
with Neural Network techniques is much more subtle in the respect that no
explicit threshold function is set under Evolutionary Programming principles.
Rather, the adaptive error correction mechanism itself “evolves” across time —
both in terms of input signal weights and in terms of overall specification. Here,
the number of iterations (rather than the prespecification of the level of the
threshold function) plays the predominant role in the accuracy of the final
solution.

That said, both Evolutionary Programming/Evolutionary Strategy as well as
Genetic Algorithm/Genetic Programming principles do still have much in com-
mon with Neural Networks in the sense that they all use a form of raw information
input/output error correction mechanism in their attempts to ascertain an optimal
solution. Where these programs differ however, is in precisely how the “optimal
solution” is filtered at each stage of the iteration process. It is this key factor that
is the differentiating feature between these various sub-stratum of the nonlinear
programming family of algorithms.

22 Crucial to the Neural Network approach is the choice of the weighting applied to
the threshold function. If the threshold is set too low, the model will find too many
solutions. Alternately, set the threshold too high and the model will find no solution.
Herein resides the “art” in Neural Network modeling.
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So how best to put our proprietary adapted version of nonlinear
Evolutionary Programming/Evolutionary Strategy techniques into action?
Well, before starting it must be said that — in sympathy with our comments
made in Chapter 3 on the implementation of Chaos Theory — nonlinear pro-
gramming has been a siren song beckoning onto the rocks many a would-be
investment guru in the past. What makes our approach so different? Primarily
it is because of our “structured” interpretation of how the microcompon-
ents of information come together to form larger and larger entities in a
classic biological/evolutionary fashion. Having spent such a large part of
this book getting the theory “right” one would hope there would be some
benefits to reap from this unique perspective for the applied realm as well.
Indeed, this appears to be the case. To demonstrate this, below we sequen-
tially build up a case study that ultimately culminates in a comprehensive
out-of-sample backtest of our proprietary Natural Selection™ software plat-
form over ten years of data. This backtest applies to using our “adaptively
predatory” principles for a Global Macro Hedge Fund mandate.

That said, this is not to say such principles (which leverage our proprietary
theoretical “structured information” investment process detailed exhaust-
ively in Chapters 1-6) are necessarily confined to the “Global Macro” absolute
return space. Indeed, depending upon the dataset used and the constraints
set upon the Bayesian trading rules that are directed toward discerning the
key memetic sequences along the market’s informational genome, Natural
Selection™ could just as easily identify investment recommendations con-
sistent with a long/short equity fund mandate, a statistical arbitrage absolute
return mandate, short only, CTA, even event driven strategies. Basically,
our adaptively predatory structured information approach toward investing
in financial markets is intrinsically applicable to a whole range of absolute
return investment styles and is thus (importantly) scalable across a variety of
alternate mandates. Readers should make note of this.

7.2 Evolutionary asset selection

So where to start in our Global Macro Hedge Fund mandate case study? Our
first port of call will be identifying the key memes that constitute both the
asset price and “winning strategy” drivers of each asset within our selected
asset universe. Obviously space limitations prevent us from displaying each
and every result from this comprehensive study here so by way of example
we decided to choose an asset that most investors should be familiar with —
the short-term futures contract on the S&P500.

An example of the identification of key memes in
an asset'’s information genome

Following our lead established in Chapter 5, it is possible to use Natural
Selection™ to discern the key informational drivers of a particular asset’s
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performance that are already in place. To do this, the software must
inexorably discern an asset’s informational genome and (as we stated in
Chapter 5) the most concise way to visually represent this overwhelming
array of information is by appealing to our aforementioned “informational
radix” structure.

The following figure illustrates the informational radix for the S&P500
short-term futures contract — as has been ascertained by using an adapted
(forward looking) form of bioinformatics based Evolutionary Programming
for structured information search within our Natural Selection™ model. To
do this, as mentioned in Chapter 5 and in the preceding section, we appeal
to Bayesian trading rules (“strategies”) as the criteria via which the relat-
ive strength of alternate memetic sequences are assessed. It is the relative
payoff performance of these various memetic-based Bayesian trading rules
(as independently defined using our bioinformatics-based Evolutionary Pro-
gram within Natural Selection™) that identifies the key memetic sequences
that have the largest impact upon the S&P500’s short-term futures contract
(Figure 7.2).23

In interpreting Figure 7.2, as discussed in detail in Chapter 5, it is those
memetic sequences with the strongest impact upon the S&P500 future con-
tract’s price performance at a given point in time that are recorded as clusters
closer to the “inner core” of the informational radix. Conversely, those
memetic clusters with less of a bearing on this particular asset’s price per-
formance are identified more toward the periphery. Time is measured by
an upward movement along the vertical axis while the waxing and wan-
ing of emergent themes or even a change in overall market sentiment
itself is illustrated by a demonstrable change in the actual structure of the
informational radix.

For our given Global Macro Hedge Fund asset universe, Natural Selection™
can identify a similar type of structure for each and every asset. It does this by
identifying what proportion of a given asset’s key memetic drivers are present
at any given point in time and also makes a prediction for the formation of
certain memes in the future given:

1 the relative percentages of as yet unformed memes already in existence at
a given point in time; and

2 using an epoch matching formula, identifying the probabilities of certain
meme forming bytes manifesting in the near future given the similarities
between the present epoch and past epochs.

Still, Natural Selection™ does not rely upon simple asset price projections
to form its investment recommendations. Why? To do so would fail to bring

23 Note that in Figure 7.2 we have constructed our assessments on an annual basis from
June 2000 onward.
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Japan CPI (t-3) -1, Euroland CPI (t-2) 1, Coca-Cola 12mth Fwd Earnings Revision (t-2) 1, Bank
of America 12mth Fwd Earnings Revision (t-1) -1, Pepsico 12mth Fwd Earnings Revision (t-5) 1.
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Ratio (t-4) 1. Meme 9: Euroland CPI (t-2) 1, Citigroup 12mth Fwd Earnings Revision (t-5) 1, Procter
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(t-5) 1.

Figure 7.2 The price-based informational radix for the S&P500 futures contract?s

24 Note that consistent with our discussions to date, each information byte (¢) is
encoded. To do this, we took the running five-year (out-of-sample) average of the
time-series for each information byte and compared each respective observation (¢)
at time ¢ relative to its average to “normalize” all our observations. Subsequently,
the encoded outcomes for the normalized data were as follows: 0<¢<0.5=1,
05<9p<1.0=2,10<9p<1.5=3,1.5<9p<20=4,20<¢9p<2.5=5,25<¢<3.0=6
and ¢ >3.0=7. With the converse applying for the left hand (negative tail) of
the distribution.

25 Something to look for in making any casual observation of an informational radix
is the frequency of triple byte memes. Triplet bases form the foundation for the genetic
code underlying messenger RNA so the presence of triple byte memes is automatically
analogous to the types of key sequences we observe in nature. Yet again, it appears that
nature is providing a “guiding light” to our evolutionary interpretation of markets as we
have observed a surprising number of triplet memes in our studies to date. Furthermore,
some information bytes seem to appear on a reoccurring basis — irrespective of the
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into consideration the explicit reactions of other investors in responding to
specific (memetic) information signals. As stated in the introduction to this
chapter, the raison d’étre of Natural Selection™ is to be “adaptively predatory”
upon other investors fallibilities. Since such investors typically use heur-
istic rules of thumb (i.e., simple strategies) to encode and categorize the vast
amount of information presented to them each and every day, then Natural
Selection™ needs to explicitly consider such strategies as part of its “raw data”
information-set. Doing so enables us to form a far more comprehensive pur-
view of the actual drivers of asset performance and also allows us to develop
a range of comprehensive “2nd Phase” strategies that prey upon the inev-
itable fallibilities of standard preexisting strategies as they emerge, mature
and fail in a manner predicted by our biological-like/evolutionary informa-
tion “building block” principles. We feel this byte to meme, meme to theme,
theme to overall market sentiment approach to the “winning strategy” diffu-
sion process across the wider market is considerably more sophisticated than
many investment styles undertaken by market practitioners in the present
day. Subsequently, we turn our attentions to implementing information radix
techniques for forming a better understanding of the “winning strategy”
life cycle.

An example of evolutionary strategy selection

As stated earlier, it is insufficient for Natural Selection™ to make an invest-
ment recommendation on singular predictive asset price performance alone.
Somewhere explicit in our analysis must be an interpretation of investor
action (in other words, the greater market’s response) to specific inform-
ation signals. As investors typically use preconceived strategies to guide
their behavior in response to such signals, then it is incumbent upon us
to build as many of these preconceived strategies as possible into the raw
dataset of Natural Selection™.2% Doing so adds an all-important “2nd Phase”
perspective to the investment recommendations of Natural Selection™ in
the sense that we can identify whether a particular preconceived “win-
ning strategy” is in the early stages or at the mature stages of its inevitable
theme diffusion path in response to the presence of supportive ancillary

price series used. Obviously, these information bytes are deemed to have a wide sig-
nificance by market participants across all asset classes and the externality potential
(x) of such bytes is exceedingly large. For a comprehensive discussion measuring
the frequency of such phenomena along very long sequences, see Allouche and
Shallit (2003).

26 Some of these preconceived strategy formulae are represented in Appendix 1.
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memetic information.?” In short, by considering such strategies as part
of its overall dataset, Natural Selection™ is automatically able to identify
the “greater herd” investor response to the appearance of specific memetic
sequences and this enables us to develop an appropriate “predatory” strategic
response.

For example, a particular memetic sequence may be commensurate with
the outperformance of “high Beta” assets such as Emerging Market equit-
ies or High Yield bonds. This memetic sequence may also be indicative of
investors focusing on certain (largely momentum based) strategies for their
investment timing decisions into and out of these assets. In marrying the
two together — the preferred asset class along with the investment strategy
governing the timing of participation into and out of this asset class —
Natural Selection™ is able to signal whether to “Buy” into this strategy
(that is, assuming the particular momentum strategy is in the early stage
formation of its theme diffusion process) or alternately whether to adopt
a contrarian standpoint and “Sell” into this strategy as it is near the end
of its life cycle and our memetic-based signaling is predicting a near-term
strategy failure.?® The beauty of such an approach is that not only does it
give us an investment recommendation but also a “timing” recommend-
ation as governed by the month to month vagaries of the signaling to
the wider market that is originating from the “winning strategy” at hand
(which in the example earlier was a momentum-based strategy). All up,
we feel this is a far more comprehensive approach toward absolute return
investing than is the case with a simple (predictive) asset price investment
style.

To illustrate the efficacy of our earlier “strategy orientated” approach
toward investing, later we illustrate how a memetic string-based inform-
ation radix can be constructed for a particular preconceived strategy (in
this case, a technical-based seasonality strategy) for our chosen short-term
S&P500 futures contract.?? The differentiating feature between Figure 7.3 and
Figure 7.2 is that in the information radix below a movement up the vertical
scale is represented by the payoff function from a slavish adherence to this

27 Obviously by taking into consideration such inevitable “winning strategy” life
cycles, the investment philosophy provided under the auspices of Natural Selection™
is consistent with Maynard-Smith’s premise of an ESS.

281n such cases, the “winning strategy” that is in the early stages of form-
ing is a “short momentum” strategy. Likewise, such “long to short” strategy
swings are inevitably accompanied by the emergence of other “winning” long
strategies. So the investment recommendations from Natural Selection™ are typic-
ally neither 100 percent long or 100 percent short — even though theoretically this
is possible.

29 For a detailed exposition on the various methods available to construct such a
seasonality strategy, see Kaufman (1998).
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particular strategy. Those memes with the most significant influence upon
the payoff function are located in clusters closer to the “inner core” while
those memes with less of an impact are located more toward the periphery.
We illustrate both complementary and contrarian standpoints in an attempt

to ascertain the key “long” strategy signaling memes and “short” strategy
signaling memes.

Seasonality strategy — S&P500 futures contract
(Complementary strategy — “strategy take-up” memes)
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Meme Legend: Meme 1: Euroland CPI (t-5) 1, Japan CPI (t-6) -1, Dell 12mth Fwd Earnings Revision
(t-4) -1. Meme 2: Euroland CPI (t-5) 1, Oracle 12mth Fwd Earnings Revision (t-1) -1. Meme 3: US
Fed Funds Rate (t-3) 1, US CPI (t-5) 1, Euroland CPI (t-4) 1, Citigroup 12mth Fwd Earnings Revision
(t-1) 1, IBM 12mth Fwd Earnings Revision (t-5) -1. Meme 4: Japan CPI (t-6) -1, Euroland CPI (t-5)
1, IBM 12mth Fwd Earnings Revision (t-4) -1, Dell 12mth Fwd Earnings Revision (t-4) -1. Meme 5:
Japan CPI (t-6) -1, Euroland CPI (t-5) 1. Meme 6: US PPI (t-2) 1, Euroland CPI (t-1) 1, Japan CPI
(t-2) -1, GE 12mth Fwd Earnings Revision (t-6) -1, IBM 12mth Fwd Earnings Revision (t-5) -1.
Meme 7: Japan CPI (t-6) -1, Euroland CPI (t-5) 1, IBM 12mth Fwd Earnings Revision (t-4) -1, Pepsico
12mth Fwd Earnings Revision (t-3) 1. Meme 8: Japan CPI (t-6) -1, Euroland CPI (t-5) 1, Johnson &
Johnson 12mth Fwd Earnings Revision (t-6) 1, Time Warner 12mth Fwd Earnings Revision (t-3) -1,
Procter & Gamble 12mth Fwd Earnings Revision (t-4) 1, Novartis 12mth Fwd Earnings Revision
(t-5) -1. Meme 9: Euroland CPI (t-5) 1, IBM 12mth Fwd Earnings Revision (t-4) 1, Vodafone 12mth
Fwd Earnings Revision (t-1) -1. Meme 10: Japan CPI (t-6) -1, Euroland CPI (t-5) 1, Time Warner
12mth Fwd Earnings Revision (t-3) -1, Pepsico 12mth Fwd Earnings Revision (t-5) 1.

(Figure 7.3 continued)
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Seasonality strategy — S&P500 futures contract
(Contrarian strategy — “strategy failure” memes)
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Meme Legend: Meme 1: OECD Leading Indicator (t-5) -1, Novartis 12mth Fwd Earnings Revision
(t-2) -1, Nokia 12mth Fwd Earnings Revision (t-4) -1. Meme 2: OECD Leading Indicator (t-2) 1,
Walmart 12mth Fwd Earnings Revision (t-6) 1, Time Warner P/E Ratio (t-4) 1. Meme 3: Shell 12mth
Fwd Earnings Revision (t-4) 1, Bank of America Shell 12mth Fwd Earnings Revision (t-1) 1. Meme 4:
Time Warner P/E Ratio (t-4) 1, Toyota 12mth Fwd Earnings Revision (t-5) -1. Meme 5: Time Warner
P/E Ratio (t-4) 1, Toyota 12mth Fwd Earnings Revision (t-5) 1. Meme 6: Mexican Stock Exchange
(t-1) 1, IBM 12mth Fwd Earnings Revision (t-6) 1, Time Warner P/E Ratio (t-4) 1, Altria 12mth Fwd

Earnings Revision (t-6) 1. Meme 7: Time Warner P/E Ratio (t-4) 1, Toyota 12mth Fwd Earnings
Revision (t-5) 1.

Figure 7.3 The information radix for a seasonality strategy approach to the S&P500
futures contract — both a complementary and contrarian viewpoint

By comparing such information across a range of different assets
and a plethora of different preconceived investment strategies, Natural
Selection™ is then able to provide a specified number of its strongest signal
recommendations across a selected asset universe. Still, such a “best of breed”
set of investment recommendations must sit well together within an over-
all portfolio structure. Which leads us nicely into the next stage of the
algorithmic structure of Natural Selection™ — how to use these investment
recommendations to build an evolutionary portfolio which is consistent with

the principles outlined in our critique of Evolutionary Portfolio Theory (EPT)
in Chapter 6.
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7.3 Evolutionary Portfolio construction

What about risk? Return projection — no matter how comprehensive —
represents just one side of the coin when it comes to prudent investing.
Obviously, to minimize portfolio drawdown potential we must also incor-
porate some aspect of risk management into our ruminations. Thankfully,
Natural Selection™ — with its barrage of patented bioinformatics-based adap-
ted Evolutionary Algorithms — does this with comparative ease. As was
explained in Chapter 6, using an epoch matching technique to examine the
various “moments” of selected assets when a particular “winning strategy”
(either complementary or contrarian) is garnering wider market dominance
underpins the very foundations for our Evolutionary Value-at-Risk (EVaR)
technique.®® Further, by matching (strength of signal adjusted) projected
“winning strategy” returns vis-a-vis projected drawdowns as each emergent
“winning strategy” within our “best of breed” asset universe progressive
matures, it is possible to iteratively assign a series of time-variant weights
for a truly evolutionary portfolio — as consistent with the underlying premise
of our EPT. Both these elements to our comprehensive investment approach
will be discussed in due course.

An example of EVaR principles at work

Again, space limitations preclude us from outlining an EVaR assessment for
each and every asset within our selected asset universe across our chosen
case study of a Global Macro Hedge Fund mandate. Still, consistent with the
earlier EVaR assessment, we have opted for an illustration of this technique
using an asset that most investors should be familiar with - the short-term
futures contract on the S&P500.

Below we illustrate the time-variant probability attached to a 5 percent
drawdown on a S&P500 futures contract position as determined by a series
of out-of-sample tests of our Natural Selection™ platform. These results were
constructed for a one-month investment horizon and by obtaining a pro-
jection for a particular “winning strategy” for the S&P500 at each time ¢.
These strategy projections — together with the ancillary data within the over-
all dataset — were then (on an out-of-sample basis) progressively matched
against past epochs to build up a purview of the EDF for the S&PS00 at
each time t. It is from this EDF that we obtained the representative prob-
ability of a 5 percent drawdown on our selected asset — as conditional
upon a one-month investment horizon. What is immediately obvious is
the significant degree of volatility in such projections. Obviously such

30 Which, in turn, is driven by our concept of an Evolutionary Distributional Form
(EDF).
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volatility would not occur had one assumed a static (traditionally Gaussian-
based) distributional form to estimate drawdown potential (Figure 7.4).3!

But still, the above does not provide us with any insight as to how
to best use this information. To do so, we must amalgamate both
risk and return aspects of the overall investing conundrum. This is
done in the following sub-section where we discuss the application of
Evolutionary Portfolio Theory (EPT) to our Global Macro Hedge Fund
case-study.

Putting it altogether using Evolutionary Portfolio Theory

as a guide

Amalgamating both the risk and return aspects of our revolutionary evol-
utionary approach to information in financial markets is the charter of
our EPT technique. In doing so, we combine both the ESS/investment
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Figure 7.4 A 5 percent drawdown probability assessment for the S&P500 futures
contract — using our proprietary EVaR principles as a foundation3?

31 That said, some volatility in such assessments does occur when “static distribution”
techniques are used. Still, given the degree of overlap in the out-of-sample “rolling win-
dow” over which such distributions are fitted, the degree of volatility is considerably
less marked than that displayed in Figure 7.4.

32 Obviously a negative probability for a 5 percent drawdown implies our EVaR assess-
ment is approximating a mean positive (rather than negative) return. Ultimately, such
predictions marry in nicely with our ESS formulations as both risk and return facets
of our evolutionary approach toward investing are effectively amalgamated under our
Evolutionary Portfolio Theory (EPT) banner.
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projections obtained under the auspices of our Evolutionary Asset Selection,
along with the projected drawdown assessments compiled under our EVaR
technique to provide a comprehensive list of each asset’s projected risk
and return characteristics (over a specified timeframe) across an entire
asset universe. Importantly, our return assessments are formulated on the
basis of past (epoch matched) experience where each asset’s predicted
“winning strategy” is forecast to emerge in dominance over a specified
timescale — as conditioned by the expected pace of meme formation over
one’s chosen investment horizon. Furthermore, these return assessments
are then weighted by our proprietary “strength of signal” assessment that
takes into consideration the confidence attached to each risk/return forecast.

Using this “raw data” input Natural Selection™ is able to iteratively
build a sequence of optimal time-variant portfolio weights (for a chosen
number of assets) that takes into account both the risk and return attrib-
utes of a particular asset as well as the offsetting potential for overall
portfolio drawdown that certain asset combinations have (in other words,
their covariance structure). Importantly, Natural Selection™ does this by
factoring in the fundamental byte to meme, meme to theme, theme to
overall market sentiment evolutionary path of each “winning strategy”
projection for the selected assets within the portfolio. So does the sys-
tem work? We let the results speak for themselves in the following
section.

7.4 Does it work? the results of ten years of out-of-sample
backtesting for the investment recommendations
from Natural Selection™

Without doubt, the proof of the pudding is in the eating so what hap-
pens when we put together the various mechanisms separately identi-
fied in the previous section to develop a truly evolutionary portfolio?
Figures 7.5-7.9 and Tables 7.1 and 7.2 illustrate the performance of Nat-
ural Selection™ for the past ten years of out-of-sample backtesting in
generating exceptional returns across our selected asset universe within a
Global Macro Hedge Fund mandate. As can be seen, the results are quite
impressive.33

33 As always, the normal disclaimers apply in the sense that past performance is not
always a reliable guide as to future performance. Further, these results apply to a specific
asset universe over a specific epoch of time and should be taken as broadly indicative
only. Note: all performance estimates are in NAV terms — net of 2 percent management
fees and 20 percent performance fee above the Federal Reserve Funds Rate. Transac-
tion costs and market impact ratios are included in these estimates. The portfolio is
denominated in $US terms.
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Table 7.1 Key performance indicator summary

Indicator Performance
Ytd Return 17.05%
Annual Return St Dev 4.38%
Monthly Return St Dev 1.82%
Annual Return Sharpe Ratio 3.50
Annual Sortino Ratio 2.14
Max Drawdown Since 2000 —4.75%
Down Mths Since 2000 25.00%
Annualized 3yr Return 23.23%
3yr Annual St Dev 6.20%
3yr Monthly St Dev 2.75%
3yr Sharpe Ratio 3.47
3yr Sortino Ratio 3.94
Aug 12mth Portfolio Turnover 665.32%

Maximum Leverage 2X




Table 7.2 Monthly performance profile since 2000 (%)

Year Jan Feb March Apr May Jun Jul Aug Sep Oct Nov Dec Total
2000  1.37 14.69 —1.94 5.29 4.08 1.84 -1.55 1.60 1.43 2.10 1091 0.53  38.50
2001 6.97 —4.75 7.60 =227 -1.15 1.01 4.20 3.15 16.74  —-2.63 8.38 2.57  37.36
2002 1.63 -1.12 -0.54 -1.14 0.88 5.76 1.06  -1.47 8.38 1.86 10.01 —-1.64 22.63
2003  0.79 2.78 5.72 2.20 2.04 2.61 1.14 227 -047 5.38 0.38 5.79  30.01
2004 1.49 2.11 -1.60 -0.31 4.58 -1.28 2.55 0.43 1.77 2.85 2.12 2.65 17.05

€€l
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Hopefully the above provides some insight as to the capabilities of
our revolutionary new investment process and its most obvious phys-
ical embodiment — the Natural Selection™ software platform. As we men-
tioned earlier, even though the above results refer primarily to a Global
Macro Hedge Fund mandate, this particular case study was chosen for
illustrative purposes only. Indeed, Natural Selection™ could just as easily
be used to identify investment opportunities consistent with long/short,
statistical arbitrage, even event driven strategy absolute return man-
dates. We leave such examples as grist for the mill in future embod-
iments of our work - see Appendix 3 for details. Suffice to say here,
we are extremely pleased with the results to date and the future looks
bright for Evolutionary Finance both on a theoretical and applied basis.



8

Future Directions — The Path
Ahead for Evolutionary Finance

Let us begin our conclusion to this book by way of summary of what we
have presented. In Chapters 2 and 3 we outlined the foundations of both
“traditional” and “new” views on the mechanics underlying information
and asset price dynamics in financial markets. Without doubt, our own
purview of financial market information forming together in a manner con-
sistent with biological/evolutionary principles falls firmly under the “new”
view umbrella.! Indeed, we directly incorporated some preexisting “new”
view principles into our own model of information mechanics presented in
Chapter 4. This, “Evolutionary Finance” perspective on markets began with
the simple premise that investors interpret interdependent information using
a process of encoding and categorization. This fundamentally all-too-human
response toward informational structure can be readily described by a byte
to meme, meme to theme, theme to overall market sentiment “informa-
tion building” mechanism where the order of information arrival is deemed
to be important. Still, in undertaking such behavior investors typically use
heuristic rules of thumb (simple strategies) to assist with the encoding and
categorization process. Unfortunately, as we have seen, such rules have a
tendency to go wrong.

In Chapter 5, we heightened the degree of rigor by developing a compre-
hensive model of intertemporal information consumption/production. We
used this model to establish the economic foundations for the publication

1 Our appeal to biology as a means of explaining observed market phenomena should
not come too much as a surprise. Mankind has repeatedly referred to nature for inspir-
ation. For example, the Eiffel Tower’s crisscross pattern replicates that of spongy bone
in the femur, Alexander Bell’s studies on the ear lead to his ideas for the microphone in
the 1870s, Georges de Mestral — a Swiss engineer — developed Velcro in the late 1940s
after observing how burrs stuck to his dog after a country walk. See Thompson (1942)
classic On Growth and Form for a comprehensive overview of some of the mathematical
inspirations one is able to draw from “solutions” to certain problems that nature has
ascertained — thanks to the refining comb of natural selection.

235



236 Evolutionary Finance

of an infinite stream of information bytes by the analyst community. The
establishment of such foundations were a necessary evil for contrasting our
perspective vis-a-vis the long-standing traditionalist view that such informa-
tion “manufacture” is of little economic value in a “fair-game” marketplace.
By establishing an economic justification for a continuous stream of analyst
produced information - the effective constituents of the market’s informa-
tion genome (3 ¢j) — we were then able to develop a series of appendages
to our model that displayed how the format of information affected mar-
ket price dynamics. This was done via a classic information binding process
where bytes form memes, memes form themes and themes form even broader
swings in market sentiment. Finally, we presented our preferred model in the
final stages of Chapter 5 —a model that was able to be sufficiently generalized
to display a plethora of interesting Evolutionary Finance principles simply
through its ability to encode the infinite stream of analyst output into a
market information “genotype” (3_ ¢j) that, in turn, determined an array of
interesting asset price “phenotypes.” Such asset price time-variant pheno-
types were displayed at the broad market index level using our innovative
informational radix technique.

In Chapter 6, we again opted for a rigorous approach but this time to
describe the actual microfoundation principles governing analyst choice as
to the format of the information bytes they produce. Here Evolutionary
Game Theory was the chosen medium of formalization and through a vari-
ety of generalized models we were able to describe how the relative payoff
from pursuing alternate “information producing strategies” (which determ-
ine information byte format) will dictate the appearance of endemic “strategy
herding” within the analyst community. Ultimately, this “strategy herd-
ing” behavior is a necessary evil for the appearance of theme formation in
a classic diffusion-like pattern but one consequence of this inevitable ana-
lyst clustering is a marked skewing in the distributional form of asset prices.
We were able to demonstrate the link between analyst “strategy herding”
and the time-variant movements in asset prices under a variety of alternate
strategy regimens. Further, we were able to illustrate how such a time-variant
principle as our Evolutionary Distributional Form (EDF) will affect financial
engineering’s “best practice” in the fields of option pricing, Value-at-Risk,
and mean-variance optimization.

Finally, in Chapter 7, we put all the theoretical principles developed in the
preceding chapters to work in demonstrating how our revolutionary evolu-
tionary perspective on information within financial markets can be used to
garner exceptional returns across an array of absolute return strategy man-
dates. Using a Global Macro Hedge Fund investment style as our chosen
forum for case study, we illustrated how our proprietary bioinformatics adap-
ted Evolutionary Programming/Evolutionary Strategy software platform -
Natural Selection™ - was able to discern a series of key memetic strings
for “upstream” winning strategy prediction from a preconceived strategy
set. Using our unique “adaptively predatory” approach we were then able
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to discern whether to “Buy” into a newly emergent “winning strategy” or
adopt a contrarian stance and “Sell” into a mature “winning strategy” - which
ultimately stood a good chance of an eventual wider investment market real-
ization of a “strategy failure” over our specified investment horizon. Further,
using our proprietary Evolutionary Value-at-Risk (EVaR) and Evolutionary
Portfolio Theory (EPT) techniques developed in Chapter 6, we were able to
place such exceptional return investment recommendations within the con-
text of a drawdown risk adjusted evolutionary portfolio whose time-variant
weightings reflected the expected pace of winning strategy theme diffu-
sion for each of our selected assets. All up, a very comprehensive and
sophisticated approach.

So where to from here? What is the path ahead for Evolutionary Finance?
Without doubt, the future looks rosy for our revolutionary evolutionary per-
spective on information within financial markets. That said, to provide some
brief insight as to how we expect our approach to evolve in the years to
come, we have divided our thoughts along the lines of the theoretical and
the applied.

8.1 Future directions for Evolutionary Finance — the theory

How is the theory of Evolutionary Finance likely to “evolve” going for-
ward? One item of particular interest from a theoretical perspective briefly
touched upon in the early stages of this book is the symbiotic relationship
between information orientated institutions and the actual fabric and texture
of information itself. Looked at through a certain lens, much of the institu-
tional structure that constitutes what we today perceive to be the “market”
is actually involved in some way with an informational role. Investment
banks produce research, so too do fund managers, news organizations report
this research, regulators monitor the dissemination of this research, and
investor’s interpret this research and adjust asset prices accordingly — but in
doing so generate an informational feedback that eventually gets embodied
in new research. And so goes the financial market information cycle.

The analysis presented in this book was focused purely on establishing a
better understanding of the information cycle itself via examining inform-
ation not as some textureless generic concept but rather as a diverse array
of forms - forms that have an immediate analogous reference to the way
information is encoded in the evolutionary/biological sphere. But there is
another form of evolutionary feedback that we did not have the space to
consider here but nevertheless is crucial to forming a better understand-
ing of the information/market price dynamic. This evolutionary feedback
is between information and the “market” itself. How do institutions form
to enhance the evolutionary principles of information dispersal? Consistent
with the work of Watts (1999) and Bonabeau et al. (1999) we know that
complex networks are formed from relatively simple principles. So does the
institutional structure of what we observe as the information orientated
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marketplace actually constitute such a “complex network” and if so, how
does this institutional structure actually affect the fabric of information
itself? Certainly both entities — the institutional structure of the market and
information itself — consistent with the principles of North (1990), Mainzer
(1997) and Olsen (1982) - are evolving through time. We would argue that -
in the spirit of Ayres (1994) — both are evolving symbiotically. We simply
cite this institutional/informational evolution aspect to our approach as an
area of potentially fruitful future research under the Evolutionary Finance
banner.

8.2 Future directions for Evolutionary Finance — the practice

But what of Evolutionary Finance from an applied sense? Certainly we — as
we will outline in Appendix 3 - will be ardent supporters of the principle of
Evolutionary Finance in pursuing exceptional absolute returns across a vari-
ety of investment mandates for our clients. But what of the actions of others?
Well, in part in response to its proprietary nature and in part is response to
the overall complexity of the approach, we feel the take-up of Evolutionary
Finance principles by the wider investment community will be relatively
slow. This is not such a bad thing as it provides us with more opportunities
to “prey” upon those who are either slavishly following a static preconceived
investment strategy or alternately are following very rudimentary heuristic
investing rules of thumb that have neither the depth nor the breadth of our
overarching investment philosophy.

Which ultimately brings us to another point. Some have argued that by
writing a book about our proprietary investment process we are opening
ourselves up to others mimicking certain aspects of our investment style.
This, they argue, in true evolutionary fashion would progressively “bid the
alpha” out of our unique investment philosophy. To these critics we have
two responses. First and foremost is the fact that our investment process
is patent protected at the broad business method level and is thus propri-
etary and defensible. Second, even if future aspirants were to attempt to
mimic our approach, our underlying principles are adaptive enough so that
if such moves had a marked impact upon market dynamics our “adapt-
ively predatory” approach would take into account such behavior within
our preconceived strategy set.

As a consequence, consistent with Keynes’ beauty pageant analogy cited in
Chapter 3, we would not only concentrate on “2nd Phase” investor response
behavior but also (where appropriate) “3rd Phase” investor response beha-
vior and the hunters would effectively become the hunted. In our particular
field having first mover advantage is a key principle to success so given that
we have already spent many man years refining and developing the key prin-
ciples of our revolutionary new investment philosophy, the future looks very
bright for Evolutionary Finance Ltd indeed.
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A Glossary of Investment Terms

Active Holdings: Percentage holdings of assets above or below a specified
Benchmark. See Benchmark.

hactive = hl’ortfolio - hBenchmarkr

where

hportfolioc = vector of total portfolio holdings; and
hBenchmark = vector of benchmark holdings.

Active Management: The pursuit of investment returns in excess of a
specified Benchmark. See Benchmark.

Active Mode: The operation of pursuing portfolio construction (and
performance) relative to a specified Benchmark. See Benchmark.

Active Return: Portfolio return in excess of a specified benchmark. Referred
to as “Alpha.” Generally forward-looking — ex ante — rather than historic —
ex post. Historic Active Return is known as Residual Return. For example, if
a portfolio’s Total Return is 12 percent, and the specified Benchmark Return
is 7 percent, then the portfolio’s Active Return is 5 percent. See Benchmark
Return.

T
Ractive = hActjve (Rasset) = @,

where

hactive = vector of active holdings; and
Rasset = individual asset return.

Active Risk: The risk (as measured by standard deviation) of the active
return. Also known in the finance profession as “tracking error.”

239



240 Appendix 1

T
OActive = 4/ hActive Vhctive,

where

hactive = vector of active holdings; and
V = covariance matrix of portfolio of assets.

Alpha: The expected (or “ex ante”) residual return. Alpha is sometimes
referred to as the “expected exceptional return.” See Active Return, Residual
Return.

American Option: An option which allows exercise prior to maturity.
See European Option.

Analyst: Any individual who contributes to the stream of market
information. Typically categorized on the basis of the type of strategy they
pursue - technical, fundamental, economic and so on. Role is at times out-
sourced to professionals but it is important to remember that most investors
are also “analysts” as they undertake some form of analysis as part of their
due diligence before investing. See Strategy.

Anchoring: Facet of Behavioral Finance that concerns the power of “sug-
gestion” in the sense that investors use heuristic “rules of thumb” to form
judgments but at times such rules become “anchored” to a particular belief
structure.

Arbitrage: The “risk-free” pursuit of profit in buying and selling compar-
able assets across markets where price disparities exist.

Arithmetic Return: The discrete return on an asset or a portfolio.
Where possible, most return measurements are made using the less volatile
Geometric Return method. See Geometric Return.

For an individual asset, the historic Arithmetic Return is calculated by

R
HR pgser = |: (Rasset )t :| —1,

(Rasset)t—k

where

Rasset = asset return; t = present time; and k = starting time.

Asset: Any instrument considered in a portfolio that has an expected return
and associated risk. A time series of returns is helpful for any asset to be
considered as a potential candidate for inclusion within a portfolio as it allows
the investor to form some judgment of ex ante return and risk. “Assets” can
be as diverse as Real Estate, Vintage Wine, Art, Equities, Bonds, Options,
Collectibles and Commodities.
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Asset Return: Return for an individual asset. Can be expressed in ex post of
ex ante sense. See Active return, Alpha, Benchmark Return, Excess Return,
Exceptional Benchmark Return, Benchmark Return, Systematic Return,
Residual Return, Total Return.

Asset Universe: The number of individual assets (1) considered for a portfo-
lio. This may be entirely at the investor’s discretion — Total Mode. Or, specified
by a Benchmark — Active Mode. See Total Mode, Active Mode.

Attractor: The equilibrium state in a nonlinear dynamic system.

Autoregressive Process: A simple time-series process in which past values
for a given variable are related to present value of this variable (also known
as “AR”).

Autoregressive Conditional Heteroskedasticity (ARCH): A nonlinear
stochastic time-series process in which variance is time-variant and condi-
tional on past variance.

Behavioral Finance: Behavioral Finance is all about the fact that investors
make mistakes. They do not possess complete information, they are not equal
in financial ability, and their wants and desires alter. In other words, it treats
investors as though they are human.

Behavioral Strategy - Downside Risk Aversion: A cross asset class strategy
that takes into account the Behavioral Finance observation that investors typ-
ically display an asymmetric response function to market volatility — they do
not like large negative returns. To give some insight as to how extreme a
particular measurement of downside risk actually is, it is useful to compare
an observation in the present period vis-a-vis a long-run average. In the for-
mula below we measure 12 month rolling downside risk and then compare
this to the long-run average to generate our “buy” and “sell” signals. See
Downside Risk.

12

Asset a “Sell” if|: (R — ;4)2/ n-— 1:| > Long-run Avg.,
i=1

Downside Risk = '

12
Asset a “Buy” if[ > (R — M)Z/ n— 1} < Long-run Avg.,
i=1

where, R; = 0 if > 0.

Behavioral Strategy — P/E Momentum (Anchoring): An equity strategy
that is based on the Behavioral Finance observation that investors can incor-
rectly “anchor” a valuation at extreme levels for short periods of time in
moments of market excess. In the formula below we measure the “valuation
creep” of a given asset by taking the rolling six month change in the P/E for
the given (equity) asset. See Valuation Strategy — Simple P/E Relative.
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-6 -12
Asset d “Sell” if <Z PE,-/6) / ( > PEi/6> <0

i=0 i=—7
P/E Momentum =

-6 —12 '
Asset a “Buy” if (Z PE,-/6> / <Z PE,-/6> >0
i=0 i=7

Benchmark: A “yardstick” portfolio that an active manager’s performance
(in the sense of percentage return over a given time) is assessed against. Com-
mon examples are MSCI indices, S&P500 and FTSE indices. The ultimate goal
of an active manager is to achieve “positive alpha” — a return in excess of their
specified benchmark. See Active Return, Benchmark.

Benchmark Return: The aggregate of benchmark asset holdings multiplied
by the expected return for each individual asset. This gives an estimation of
the expected performance of the Benchmark portfolio. For the individual
asset, Benchmark return is made up of the Risk Free Rate of Return, the Risk
Premium, and the Market Timing Return. Can be expressed in either ex ante
or ex post sense. See Asset Return, Benchmark, Risk Free Rate of Return, the
Risk Premium, and the Market Timing Return.

T
RBenchmark = hBenchmark (RAsset)/

where

hBenchmark = vector of benchmark portfolio holdings; and
Rasset = individual asset return.

Benchmark Risk: The risk (as measured by standard deviation) of the
Benchmark Return. See Benchmark Return.

T
OBenchmark = \/h Benchmark VhBenchmark;

where

h Benchmark = vector of benchmark holdings; and
V = covariance matrix.

Beta: The volatility of a portfolio (or asset) relative to its benchmark. Beta
is simply the ratio of the Covariance of an asset with its benchmark relative
to the overall variance of the benchmark. A Beta of 1 implies commensur-
ate volatility of the asset (or portfolio) with its specified benchmark. See
Covariance, Variance.
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For an individual asset,

B . Cov (Rasset, RBenchmark)
sset = ’
Var(Rpenchmark)

where

Rasset = asset return; and
Rgenchmark = benchmark return.
The portfolio beta is

_ Vhgenchmark
ﬂPortfolio(Asset) = 2 ’

Benchmark

where

V = covariance matrix;
Npenchmark = vector of benchmark holdings; and
Ofenchmark = Pe€nchmark variance.

Bera—Jarque Test: Tests for the normality of a distribution of asset returns
by simultaneously analyzing both third and fourth moments of the distribu-
tion. See Kurtosis, Skew.

§2(K-3)?
Bera-Jarque =N [6 + 1 |’

where

N = number of observations;
S = skew of distribution; and
K = kurtosis of distribution.

Bifurcation: When a nonlinear dynamic system develops twice the solu-
tions it had past some critical level. Also known as “period-doubling.”

Binomial Method: Numerical time-step technique for option pricing.
Relies upon simulated expansion over specified interval where the price of
the underlying asset is assumed to move in a probabilistic determined fashion
either upward or downward. See Trinomial Method.

Black-Litterman: An input conditioning mechanism developed by Fischer
Black and Bob Litterman that ensures the linearization between an investor’s
ex ante return and the historical risk of assets within a portfolio. This ensures
spurious Efficient Frontiers are not generated as a result of optimization. See
Efficient Frontier.
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_17-1
Total Mode: BL(Rasset) = | A~} +< vV )
(Nx1) (NxN) (I1x1) (NxN)
-1
x| a7l RAsset+< ¢ \4 ) HRpsset |
(NxN) (N%1) (1x1) (NxN) (Nx1)

_17-1
Active Mode: BL(Rasset) = | A7} +( ® v )
(Nx1) (NxN) (Ix1) (NxN)

-1
x | A7L IMP (RActive)+< ¢ 1% ) HRpenchmark |
(NxN) (Nx1) (I1x1) (NxN) (Nx1)

where

A = diagonal (N x N) matrix indicating investor uncertainty.

Note: Default set at the standard deviation of each asset.

(SDn)ll --------- 0
0...8Dp)22...... 0
A =
(NxN)
O (SDH)NN

V = covariance matrix;

¢ = scalar of confidence for expected returns (0 < ¢ < 1);
Rasset = individual asset expected return;

HRsset = historical asset return;

IMP(Ractive) = implied active return; and

HRgenchmark = historic benchmark return.

Black-Scholes: Theoretical method for option pricing.

Bootstrapping: Iterative interpolation technique common used for deter-
mining forward interest rates.

Bounded Rationality: Field of thought which recognizes that even a truly
“rational” investor can only make decisions on the basis of what they already
know - or in modeling jargon, the information-set available at time ¢. Hence,
the “bounded” component to bounded rationality. Sometimes known as
“quasi-rationality.”

Brownian Motion: See Random Walk.

Capital Asset Pricing Model (CAPM): An equilibrium-based asset pricing
model developed independently by Sharpe, Lintner and Mossin. The simplest
version states that assets are priced according to their relationship to the
Market Portfolio via individual asset Beta’s. Assuming a number of stringent
conditions such as rationality on behalf of investors, costless information
(or costless arbitrage) and highly liquid markets, CAPM’s most obvious (and
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perhaps most useful) foundation is the requirement for a direct relationship
between risk and return. See Market Portfolio, Beta.

Chaotic Systems: Nonlinear dynamic systems that are primarily
deterministic rather than stochastic in foundation, but display non-
replicating/unstable behavior dynamically.

Cluster Analysis: Statistical technique based upon the idea of measuring
distances, subject to a given metric, between points in a multidimensional
space. Successive levels of aggregation allow for a “cluster hierarchy” to
be built and represented graphically. Typical approaches include k-means
clustering and EM clustering.

Complex Systems: Nonlinear dynamic systems that display self-
organizing behavior and are primarily deterministic rather than stochastic
in foundation.

Constraints: Percentage limitations under which a portfolio optimization
is run. Constraints can be arbitrary in nature such as a investor’s preference
to hold a majority of their assets in a preferred stock, to something a little
more rigorously imposed such as a fund manager’s mandate not to have more
than a certain proportion of a given portfolio in emerging markets.

Cornish-Fisher VaR: An adaptation of standard Value at Risk (VaR) to take
into consideration skewness and kurtosis. See VaR.

1 1 1
Cornish-Fischer VaR = Z + g(Z2 -1S+ ﬂ(23 —320)K — %(223 —52)8?,

where

Z = VaR critical value;
S = skewness; and
K = kurtosis.

Correlation: The degree to which alternate assets influence each other as
expressed by a numeric between —1 and + 1. Correlation is the standardized
measure of Covariance. See Covariance.

_ Cov(Rasset(x), Rasset(v))
O Asset(X)OAsset(Y) !

PXY

where

Cov (Rasset(x), Rasset(v)) = covariance between asset X and asset Y;
oassetx) = standard deviation (risk) of asset X; and
oasset(v) = standard deviation (risk) of asset Y.

Covariance: The degree to which alternate assets influence each other as
measured by the co-movement of excess returns.
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COV(RAsset(X); RAsset(Y)) = Z Z (Rx — ux)(Ry — pny),
all X all Y

where

Rasset(x) = return on asset X;

Rasset(yy) = return on asset V;

IAsset(x) = Imean return on asset X; and
MAsset(y) = mean return on asset Y.

Covariance Matrix: A (n x n) matrix representation of the Covariance
between all the assets in the specified Asset Universe. See Covariance.

Cumulative Return: Returns calculated as compound returns. See Historic
Asset Return.

Currency Hedging: The attempt to optimally allocate the currency
exposures associated with cross-border investment. Each foreign asset has
an implied currency exposure — assuming an investor can only purchase a
foreign asset in its domicile currency. As a consequence, at times it is worth-
while for an investor to use mean/variance optimization in an attempt to
ascertain the optimal combination of the basket of associated currency expos-
ures associated with their portfolio. This is done in much the same way as
that for the optimal asset basket (portfolio). That is, an expected return for
each currency exposure is formulated and then assessed against relative risk
within the portfolio of currency exposures.

Currency Return: Currency Return is the difference between the projec-
ted and present spot rate for a given currency, taking into consideration
the “carry” (short-term interest rate in the domicile country) of holding a
particular currency position.

Calculation for Currency Return against $US:
RCurrency =1+ CurLoc}BUS (1) * (1 + RFroc) — (1 4+ RFBase),

where

Curocaisus(r) = raw exchange rate return;
RF1oca1 = risk-free return for local currency; and
RFpase = risk-free return for chosen base currency.

Currency Risk: The Risk (standard deviation) attributable to currency
exposure of cross-border assets.
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T
OCurrency = \/ hCurrency VCurrencthurrency,

where

hcurrency = vector of currency holdings; and
Vcurrency = currency component of covariance matrix.

Deterministic System: Systems that are non-random in nature — their
foundations are mathematical rather than statistical and, as a consequence,
pre-ordained in advance.

Dividend Discount Model: A model for asset pricing based on discount-
ing future expected dividends by an interest rate (or “discount factor”).
Primarily applicable to the valuation of common stocks in the equity market
but can also be applied to aggregate equity indices provided an appropriate
“normalization” procedure is used.

Dividend Discount Return: The rate of return which equates the present
value of future expected dividends with the current market price of a security.
Dividend Yield: The dividend per share divided by the price per share.

Downside Risk: Estimates the probability of negative return by only
considering the negative return tail of the distribution of asset returns.

n
3" min(r; — 7, 0)2
i=0

Downside Risk =

’

n—1

where

7 = downside mean;
r; = downside returns; and
n = number of observations.

Drawdown: A negative return on a selected strategy. See Maximum
Drawdown.

Dynamic System: System of equations where the output of one equation
is part of the input for another.

Earnings Yield: The earnings per share divided by the price per share. It the
inverse of the P/E ratio. See P/E Ratio.

Efficient Frontier: A diagrammatical representation of the relationship
between portfolio risk and return as expressed by a plot of the series
of “efficient” portfolios in mean/variance space. “Efficient” portfolios are
combinations of assets with the highest return for a given level of risk (or
vice-versa —lowest risk for a given level of return). Such efficient portfolios are
constructed using nonlinear constrained optimization techniques such as the
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simplex method, downhill simplex method, neural network, and primal dual
interior solution algorithms. Efficient portfolios inevitably display a curve
upwardly sloping in a northeasterly direction. (Note: risk is traditionally
measured on the horizontal axis, return on the vertical axis of mean/variance
space). The Efficient Frontier relationship identifies the basic premise of
CAPM - higher risk portfolios require higher returns to compensate investors
for additional volatility. The nonlinearity (curve) in the Efficient Frontier
arises because rational investors invariably require ever-higher increments
of return to compensate them for each additional increment of risk they
are undertaking. This curvature relationship between risk and return is con-
sistent with the nonlinear representation of the investor’s utility function.
See CAPM.

Efficient Market Hypothesis (EMH): Classification basis for the way
information is distributed within financial markets. Three separate versions,
strong, semi-strong and weak. Strong EMH states that asset prices reflect all
information from public and private sources at each and every point in time.
Weak EMH states that asset prices only reflect relevant asset market informa-
tion. Semi-Strong EMH encapsulates Weak EMH but adds a time restraint in
arguing that asset prices adjust rapidly to the release of relevant asset market
information. A belief in Active Management implies a belief in either the
Semi-Strong or Weak version of EMH.

Equilibrium: The stable-state of a system.

Equity Risk Premium: Excess return above bond yields argued to be
demanded by investors for the higher risk associated with holding equities.
Can be constructed on both prospective and historical basis. The prospective
equity risk premium is measured as present 12 month earnings yield estimates
minus the difference between the long-term earnings growth rate (generally
assumed to be 3.0 percent) and the real risk free rate of return (for instance,
ten year US Treasury Yields minus Annual Headline US CPI). The historical
equity risk premium is measured as current 12 month trailing dividend yield
minus the difference between the long-term growth rate (again, generally
assumed to be 3.0 percent) and the real risk free rate of return (again, for
instance, ten year US Treasury Yields minus Annual Headline US CPI). Note
the secular decline in dividend payments has resulted in a considerable scalar
departure between the two measures with prospective measures of the equity
risk premium traditionally being considerably larger than the historical based
measures.

European Option: an option that can only be exercised at maturity.
See American Option.

Evolutionary Finance: The application of evolutionary/biological
principles to the field of finance.

Evolutionary Games: Basically “repeated games” with the added
condition that the actual rules of the game are dynamically changing — or
evolving — through time.
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Evolutionary Stable Strategy: The equilibrium state of an evolutionary
game that occurs when no individual (Player I) playing one strategy could
improve its reproductive fitness by switching to an alternate strategy and
no “mutant” (Player II) playing a different strategy could establish itself
(“invade”) the existing population and so disrupt the equilibrium.

Excess Return: Return above the risk free rate of return. For example,
assuming an asset’s return is 9 percent and the Risk Free Return is 4 percent,
then the asset’s excess return is S percent. See Asset Return, Risk Free Return.

Factor Model: A computationally efficient way of deriving the Covariance
Matrix. Large dimension Covariance Matrices require considerable degrees of
freedom (number of observations) to form a robust estimate of true Covari-
ance. At times, the short history associated with the time-series of some asset
classes can restrict this requirement. A Factor Model is used to construct the
Covariance Matrix in these instances. See Covariance Matrix.

Factor Model [Rassetlnx1 = [9lux -k [Flit—kyx1 + [€lux1,

where

Rasset = individual asset expected return;
¢ = factor matrix;

F = factor variable vector;

& = error vector;

n = number of assets in universe; and

(t — k) = timescale.

Fair Game: Augment to EMH developed by Fama (1970) to gauge the level
of market efficiency and its concurrent impact on price. Under the principles
of a “fair game” Fama argued that, market participants of similar financial
ability (provided they have equal access to information) cause the market
price and the expected price of any asset to converge. In a sense, everyone
comes to roughly the same conclusion as to the correct price of an asset when
presented with the same information. See Efficient Market Hypothesis (EMH).

Finite Difference Method: numerical method for option pricing.
See Monte Carlo techniques.

Fractal Analysis: Studies that typically look for interdependencies
(correlation) between datasets in different timescales in attempt to identify
the deterministic foundations that make up what we perceive to be overall
market dynamics. See Scaling.

Fundamental Information: Information relating to the underlying state
of an asset. In stock analysis, fundamental information is related to the cost
structure and earnings prospects of a specific firm - in particular, as they relate
to the valuation of that asset.
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Game Theory: A mathematical representation of the strategic interaction
between two or more “agents” —each attempting to maximize a specific utility
function and each imparting information to the other through their actions.
In many respects, Game Theory is like a mathematical formalization of the
game of chess.

Gaussian Form: Also known as the “Normal Distribution.” Distribu-
tional form that states returns are N(u, o). Product of the combination of
Fair Game principles, IID information arrival and the Central Limit The-
orem. Forms the distributional foundation of most traditionalist orientated
financial engineering techniques.

Genetic Algorithms: Computer code structure that mimics Darwinian
principles in obtaining solutions.

Geometric Return: The continuously compounded return of an asset or
a portfolio. Return calculations using this method are less volatile than
Arithmetic Returns. See Arithmetic Return.

For an individual asset, the historic Geometric Return is calculated by

HRpsset = Ln(Rasset)t — LN (Rasset)t—k»

where

Rasset = asset return;
t = present time; and
k = starting time.

Granger Causality: Econometric method used to determine existence of
causal determination between dependent and independent variables.

Granger Causality is determined by the comparison of residual sum of squares
between restricted (Autoregressive with inclusion of independent variables) and
unrestricted models (Autoregressive with inclusion of just dependent variable)

F 3 RSS(Y;_1 — Y)
vardl = RSS(Yy_1, Xt 1 — Y)'

where

Y = dependent variable;

X = independent variable(s);
F = critical value; and

RSS = residual sum of squares.

Historic Active Return: Return for the portfolio over a specified time
period minus the Historic Benchmark Return. This is calculated in Geometric
Average terms. See Active Return, Asset Return, Historic Benchmark Return.
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HRactive = L(Ractive)t — LN(Ractive)t—k,

where

Ractive = active return;
t = present time; and
k = starting time.

Historic Asset Return: Return for an Asset over a specified time period.
This is calculated in Geometric Average terms. See Asset Return, Geometric
Average.

HRasset = Ln(Rasset)t — LN(Rasset)t—k»

where

Rasset = asset return;
t = present time; and
k = starting time.

Historic Benchmark Return: Return for a Benchmark portfolio over
a specified time period. This is calculated in Geometric Average terms.
See Benchmark Return.

HRBenchmark = Ln(RBenchmark)t - Ln(RBenchmark)t—k»

where

Rgenchmark = benchmark return;
t = present time; and
k = starting time.

Historic Total Return: Return for an aggregate portfolio over a specified
time period. This is calculated in Geometric Average terms. See Total Return,
Geometric Average.

HRportfolio = L (Rportfolio)t — LN (Rportfolio)t—k:

where

Rportfolio = total return;
t = present time; and
k = starting time.
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Hurst Exponent: Measure of the bias departure of a given distributional
form away from the Gaussian distributional form. Interestingly, this measure
arose out of an analysis of frequency of flooding (using an 847 year record
no less) of the Nile river.

R/S = kTH,

where

R/S = range/standard deviation;

T = index for number (time) of observation;
k = some constant for the time series; and
H = Hurst exponent.

For H = 0.5 the series is independent. For 0 < H < 0.5 the series is antipersistent.
For 0.5 < H < 1.0 the series is persistent.

Implied Active Return: The Active Return (Alpha) for a specific asset
implied from holding that asset within a specified (benchmarked) port-
folio. Backed out of the linearity between risk and return implied under
CAPM. Note: the Implied Active Return is benchmark-dependent since the
benchmark determines the asset universe and therefore the dimensionality
of the covariance matrix. See Active Return.

IMP(Ractive) = 2 * A * (h};ctive V),

where

A = investor risk aversion;
hactive = vector of active holdings; and
V = covariance matrix.

Derivation:
Start with the investor’s utility function

U=a— 2102 ive (A1.1)
and expressing this in matrix form

U = hactive@ — AMactive X V x Bl cive)- (A1.2)
We then maximize utility by

U
M. ) — =0.
ax = onT
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This gives

o =2 %A% (V * Bpctive)- (A1.3)

Implied Risk Aversion: Also known as “lambda,” Implied Risk aversion
is the standardized measure of Risk Aversion implied under a global CAPM
framework. Representing the generic Risk Aversion of the universal investor,
this measure — A — becomes useful for a variety of implied return calculations
in portfolio theory. A common value for A is 0.75. See CAPM, Implied Active
Return, Implied Benchmark Return, and Sharpe Ratio.

Starting with the investor’s utility function
U=a—1r0%; (A1.4)

then substituting the Sharpe ratio SR = «/o using an ex post calculation of risk as
an approximation of the ex ante, it is possible to now express the investor’s utility
function as

U=SRxo—xrc’. (A1.5)
We then maximize utility by

Max U = ?—U:O,
feleg

which gives
SR—2x%ix0 =0. (Al1.6)
Rearranging gives

SR
=25 (Al1.7)
Using an equity risk premia of around 6 percent as a long-term approximation of
« and a historical risk for a global portfolio of around 20 percent, it is possible
to express the Sharpe Ratio as SR = «/o = 6 percent/20 percent = 0.3. Substi-
tuting this result into Equation (4) above and continuing to use 20 percent as an
approximation for o gives

SR 0.3

=—=_——_=0.75. Al.
200 2x20% 0.75 (AL8)
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Hence, our estimation of the level of Implied Risk Aversion under global CAPM is

A =0.75. (A1.9)

Indexing: Practice of matching portfolio composition as close as possible
to that of a specified Benchmark. See Passive Management.

Information Coefficient: The degree to which forecast returns correlate
with actual outcomes. Provides a measure of an active portfolio man-
ager’s skill. Default in most implied value calculations traditionally set
to 0.05.

Information Ratio: The ratio of annualized expected Residual Return to
Residual Risk. Not to be confused with the Sharpe Ratio which refers to Act-
ive Return (alpha) and Active Risk rather than Residual Return and Residual
Risk. The square of the information ratio is directly proportional to the value
added by the active manager. See Active Return, Active Risk, Residual Return,
Residual Risk.

Jensen’s Alpha: Measures the extent to which the performance of a port-
folio (or strategy) exceeds the expected return given the amount of risk
undertaken by the strategy.

Jensen’s Alpha = rp, — E(rp),

where

rp = portfolio return; and
E(rp) = expected portfolio return = rp + Bp(rm — 17)

where

e = risk free return;
Bp = portfolio beta; and
m = market return.

Kurtosis: Measures the “fatness” of the tails of a distribution of asset
returns. A high level of kurtosis implies “fat tails” and therefore a predom-
inance of extreme returns (outliers). Applied to a normal distribution, the
raw kurtosis below would equal 3 - hence the normalization subtraction of 3
from the formula below.

ri—n*
No# !

Kurtosis = Z
i



Appendix 1 255

where

r; = asset return;

7 = mean asset return;

N = number of observations; and
o = standard deviation.

Levy Distribution: An alternate distributional form that has been sugges-
ted by Complexity theorists as an alternative to the Gaussian form in attempt
to better capture the short-term kurtotic behavior of financial markets but
also their tendency to approximate to N(u,o0) as t — oo. The characteristic
“fat-tails” of such distributions arise in response to the presence of an inverse
power law.

Lyapunov Exponent: Measures the dynamics of an attractor in various
dimensions. See Attractor.

Magical Thinking: Behavioral Finance term which highlights that under
conditions of uncertainty investors have a tendency to form associations
between non-dependent outcomes. As if by “magic” a particular outcome
may become associated with a market event and then it is possible that the
two outcomes can become (erroneously) associated within investors heuristic
rules — even though there is no economic/finance rationale for doing so.

Marginal Contribution to Return: The additional contribution to the
Total Return for a portfolio from an individual asset. Simply a multiple of
the asset’s weight in the portfolio by its expected return.

RMarginal Contribution = Basset X E(Rasset),

where

hasset = individual asset holding;

E = expectation set; and

Rasset = returns for individual asset.

Marginal Contribution to Residual Risk: The additional contribution to
the Residual Risk of a portfolio from an individual asset. See Residual Risk.

VR — hPortfolio
’

OMarginal Contribution(Residual) = ® fol
Portfolio

where

hportfolio = vector of portfolio holdings;
VR = residual covariance matrix; and
®portfolio = residual risk for portfolio.
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Marginal Contribution to Risk: The additional contribution to Total Risk
for a portfolio from an individual asset. See Total Risk.

VhPortfolio
OMarginal Contribution = ——%5

9portfolio

where

hportfolio = vector of portfolio holdings;
V = covariance matrix; and

2 _ .
Thortfolio = total risk.

Market: Nomenclature used to describe a group of associated assets. Term
is generally used quite loosely to describe a collection of assets in similar
class such as equities, bonds, commodities, FX, or futures and options but
at times can encompass all assets. A prefix generally helps clarity such as
“equity market” or even better, an additional geographic locale such as “US
equity market” or trading board such as NASDAQ. The most accurate way
to describe the “market” is via benchmark such as S&PS500 and this is the
definition of the “market” most commensurate with portfolio theory.

Market Events: Substantial volatility in the market — generally over a short
duration of time. Traditionally measured as a daily percentage move in the
return of an asset in excess of three standard deviations from the historical
norm. See Standard Deviation.

Market Portfolio: The portfolio that is assumed to constitute the entire
“market” for a given investor. Most commonly refers to a global asset class
aggregation of various assets used for CAPM construction. See Market.

Maximum Drawdown: The maximum negative return on a selected
strategy (usually applied to Hedge Funds) over a specified timeframe.

Mental Compartmentalization: Refers to the tendency for investors
to compartmentalize assets into specific groups based upon superficial
attributes.

Modern Portfolio Theory: Refers to mean/variance optimization of port-
folios in attempt to ascertain the most “efficient” portfolio structure. See
Efficient Frontier.

Moments: The dispersion characteristics that describe a distributional
form. Most commonly known are mean (1st moment), variance (2nd
moment), skew (3rd moment) and kurtosis (3rd moment). See Variance,
Skewness, Kurtosis.

Monte Carlo Techniques: Numerical method for option pricing. Relies
upon determining the present value of the payoff of an option via extensive
iteration of the (randomly determined) price of the underlying asset. See
Finite Difference Method.
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Nash Equilibrium: The equilibrium endpoint of a game when the respect-
ive players in essence decide (generally, but not always, independently of
each other) that they have achieved the optimum outcome. This occurs when
no player would be advantaged by making an alternate decision based upon
the given array of payoffs.

Neural Network: Computer code structure that mimics the parallel
processing conducted in the human brain for obtaining solutions.

Normal Distribution: See Gaussian Distribution.

Ordinal Ranking: A methodology via which Alpha values can be con-
structed. Users “score” assets using a series of criteria such as fundamental
and technical indicators. Typically, scores range between +2 and —2. Alpha
values are then constructed by matching the aggregate score with Residual
Risk. The process assumes that market efficiency results in a linearization
between Residual Return (Alpha) and Residual Risk.

Starting with the investor’s utility function
U=a—ro? (A1.10)

where otz is the volatility of the investor’s portfolio and « is the active portfolio
return. Expressing this in matrix form yields

U = Nactivea@ — A (hAmve x V x plans ) . (A1.11)

Active

We then maximize utility by

aU
Max U = —p =0,
Active
which gives
o = 2% A% (V% hactive), (A1.12)

where

V = covariance matrix;
hactive = vector of portfolio holding’s; and
A = investor’s risk aversion.

Using
_ 2 Trans.
V=VR+ ﬁgBenchmarkﬁ ’
VR = residual risk covariance matrix;

B = vector of asset beta’s;
2 _ e
Ofenchmark = Penchmark volatility;




258 Appendix 1

we can by aid of substitution give
o =2% k% VR B0 chmark B0 * Mactive- (A1.13)

Effectively, certain segments of the RHS of Equation (A1.13) can be broken down
into three components: 2 x A = measure of information coefficient for individual
asset (its simply a scaled risk aversion parameter); UR = residual risk covariance
matrix; and ﬁaﬁenchmarkﬁm’m * Nactive = @ combination of systematic risk and port-
folio holdings (or in other words, the Score for individual holdings assuming a
linearization between risk and return).

As a consequence, it is possible to express the Alpha of an individual asset as

@ = IC % wZ ey * SCOTe, (A1.14)

where

IC = information coefficient;
“’/szset = residual volatility of an asset; and
Score = ordinal ranking.

Overconfidence, Representative Heuristic and Over/Under-Reaction:
Refers to the phenomenon that even though they are often confronted
with their failure, investors as a class often have a tendency to express
excessive confidence in their own judgments. From an Evolutionary Finance
institutional perspective this may be a Darwinian attribute of the Market in
that “only the confident (or foolhardy) survive.”

Passive Management: Also known as Index Management. Structuring a
portfolio so that its performance mimics that of a specified benchmark.

Payout Ratio: Ratio of dividends to earnings. Fraction of earnings paid out
as dividends.

Persistence: Data series that follows an observable trend.

Phase Space: Chart that depicts all possible states of a dynamic system.
Also known as a “Phase Portrait” or “Phase Diagram.”

P/E Ratio: (Price/Earnings Ratio). Price of a stock divided by earnings per
share (EPS).

Portfolio Return: See Total Return.

Prospect Theory: Field of thought that espouses that consumers specify
their value function in terms of wealth rather than utility. See Behavioral
Finance.

Random Walk: Also known as Brownian Motion. Argument where the
expected change in the value of an asset is unrelated to its past and present
changes. Supportive of the Strong EMH viewpoint of market behavior. Acts as
a modeling framework for such advanced financial tools as the Black-Scholes
option pricing model and various Factor models used in bond pricing. See
Efficient Market Hypothesis.
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Regret and Cognitive Dissonance: Type of investor behavior that repres-
ents a classic case of “living in denial.” The psychology of “regret” implies
that investors may be reticent to crystallize a loss due to the emotional pain
of being wrong.

Residual Return: Asset Return independent of the Benchmark Return.
Ex post version of Alpha. See Alpha, Asset Return, Excess Return.

Residual Risk: The standard deviation of the residual return.

For a portfolio

R 2 _(R2 2
@portfolio = v/ Pportfolio ('3 Portfolio ¥ aBenchmark)'

where

BE riiolio = Squared beta of portfolio;
Ofenchmark = Penchmark volatility; and

Fhortfolio = total risk.

Note that
2 2 . e . 2
(ﬂl’ortfoho X aBenchmark) = Systematic Volatility (Portfolio) = ogyspostolio)-

For individual asset

_ 2 _ (B2 2
WAsset = \/UAsset ('BAsset x UBenchmark)'

where

ﬂisset = squared beta of asset;
al%enchmark = benchmark volatility; and
02 = asset volatility.

Note

(ﬁﬁsset x agenchmark) = Systematic Volatility (Asset) = o0& asser -

Return Ratio: Historical version of Sharpe Ratio in matching return versus
risk. See Sharpe Ratio.

Robust Beta: A proprietary method of Beta calculation developed by
Mathsoft® that removes extreme values from Beta calculation so as to provide
a more precise estimation of an asset’s Beta. See Beta.

Risk: The standard deviation of Asset returns (sometimes measured on an
annualized basis). Generally denoted with the Greek letter 0. See Volatility.
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Risk Aversion: The amount of Risk an investor is willing to tolerate for a
given rate of Return. This will vary for each individual depending upon the
makeup of their utility function which includes such conditions as present
wealth, age, dependents etc.

Risk Free Return: Return achievable with little to no volatility. Typically a
short duration Treasury Bills is taken as the effective “risk free” return.

Risk Premium: Excess Return over a specified Benchmark. For equities,
traditionally return on excess of Risk Free Return. See Benchmark, Excess
Return, Equity Risk Premium, Risk Free Return.

Scaling: Process by which the change in a series is observed as the
scale of the measuring device is altered — usually intertemporal cor-
relation. This is typically done by constructing a k-dimensional vector
X)) =[P(),P(t+1),P(t+21),...,P(t+(k—1))r] and plotting its trajectory in
k-dimensions as t varies. Indeed, one can further formalize this approach by
examining Hurst exponents. A Hurst exponent # 0.5 implies intertemporal
correlations and thus fractal dimensions. See Fractal Analysis.

Security Market Line: A foundation of CAPM, the Securities Market Line
(SML) is the linear relationship between asset returns and their respective
Betas (relative risk). See CAPM.

Sharpe Ratio: The ratio asset/portfolio ex ante Excess Return to ex ante
Risk. Developed by Professor Bill Sharpe, hence the name. See Active Return,
Excess Return, Risk.

E(r) — 1t

Oj

Sharpe Ratio =

’

where

E (r;)) = expected asset (or portfolio) return;
¢ = risk free return; and
o; = standard deviation of asset (or portfolio) return.

Skewness: Measures the asymmetry of an asset’s return distribution around
its mean. “Positive skew” means the return distribution is disproportionately
tailed toward positive returns (whereas the converse applies for “negative
skew”). Applied to a normal distribution, skewness as measured by the
formula below would be zero.

=3
(ry —7)
Skew = Z No3 '
i

where
r; = asset return;
r = mean asset return;
N = number of observations; and
o = standard deviation.
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Sortino Ratio: Similar to Return Ratio but considers downside risk rather
than absolute risk as the denominator to compare to the asset (or portfolio’s)
numerator. See Downside Risk, Return Ratio.

T — Tt

Sortino Ratio =
DR '

where

ri = asset (or portfolio) return;
r¢ = risk free return; and
DR = downside risk.

Specific Return: Portion of Excess Return uncorrelated with the returns of
other assets (common factors). Also called the idiosyncratic return. See Excess
Return.

Specific Risk: Risk (standard deviation) associated with a Specific Return.
See Specific Return.

Standard Deviation: The square root of the volatility of asset returns.
Generally denoted by the Greek letter o. See Risk, Volatility.

Y i =P

Standard Deviation = o = pr—]

’

where

r; = asset return;
7 = mean asset return; and
n = number of observations.

Standard Error: Standard Deviation =Standard Error. See Standard
Deviation.

Sterling Ratio: Measures return relative to drawdown - either for an
asset strategy, portfolio strategy or an overall portfolio. See Sharpe Ratio,
Sortino Ratio.

Stochastic Region of Risk: A representation of the total risk of the port-
folio where the stochastic region is calculated dynamically in proportion to
total risk.

Stochastic Region of Risk = coportfolio,

where c is the dynamic proportional adjustment factor.
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Stochastic System: Systems that are probabilistic in nature — their found-
ations are statistical rather than mathematical.

Strange Attractor: An attractor where points never repeat themselves or
their orbits don’t intersect. Usually depicted as a Phase Diagram. See Attractor.

Strategy: Mechanism via which an analyst’s or investor’s actions are
governed. Ranges from the very simple heuristic rules of thumb as iden-
tified under the Behavioral Finance literature, to the considerably more
complex Evolutionary Stable Strategies championed (but not exclusive to)
the Evolutionary Finance literature. See Behavioral Finance, Evolutionary
Finance, Evolutionary Stable Strategy.

Systematic Return: Portion of an asset’s return that relates to (is correl-
ated with) Benchmark Return. Excess Return is a combination of Systematic
Return and Residual Return. See Asset Return, Benchmark Return, Excess
Return, Residual Return.

Systematic Risk: Risk (as measured by Standard Deviation) of Systematic
Return. See Benchmark Risk, Beta.

Technical Analysis: Body of thought that uses trends in (usually
price) series and various filtering techniques to make projections of future
movements.

Technical Strategy - Volume Rises/Falls: A cross asset class strategy
that simply takes the three month average of number of rises relative to
falls within a given index. Can be either a complementary (momentum
driven) or contrarian strategy. In the example below, we illustrate the
complementary case.

Volume Rises/Falls

<1
>1

Asset a “Sell” if (Volume Rises/Volume Falls), monthly Avg.

~ ] Asset a “Buy” if (Volume Rises/Volume Falls) 3 monthly Avg.

Technical Strategy - Price Momentum: A very common cross asset class
strategy that simply takes the recent performance of an asset as indicative of
its future performance. In the formula below we use the three month average
of price change for a given index as indicative of its “momentum.”

-3 -6
Asset a “Sell” if (Z P,r/3> / ( > Pi/3> <0
i=0 i=—4

-3 -6
Asset a “Buy” if (Z P,-/3)/< » P,-/3> >0
i=0 i=——4

Price Momentum =
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Technical Strategy — Skew: A cross asset class strategy that relies upon
the premise of the long-term symmetry of asset returns and the potential for
“mean-reversion” for asset classes displaying extreme skew. In the formula
below we take the 12month rolling skew estimate of monthly returns as
indicative of an asset’s “skew.” See Skew.

Asset a “Sell” if (skew)12 month < O

Skew = { Asset a “Buy” if (skew)12 month > O

Technical Strategy — Seasonality: A cross asset class strategy that takes
the average departure of a selected month’s price growth from its trend as
indicative of a seasonal pattern. There are a number of methods to calculate
“seasonality” ranging from the very simple — a simple arithmetic mean of
the average monthly return for a given month over a given timeframe - to
the exceedingly complex (e.g., taking into consideration trend departure,
differences in working/trading days for a given month etc). In the formula
below we opt for a mid-way level of complexity by taking the average trend
departure for the past 30 years of a given month — we measure “trend” as a
three month trend.

30
Asset a “Sell” if 3° (P; — Trends monn) < O
i=1
Seasonal Effect = l

30
Asset a “Buy” if ) (P; — Trends monwmn) > 0
i=1

Total Mode: The operation of pursuing portfolio construction (and per-
formance) without reference to a specified Benchmark.

Total Return: Aggregate return for the portfolio. Is the sum of Active and
Benchmark Return. Can be expressed in either ex ante or ex post sense. See
Active return, Benchmark Return.

Total Risk: The risk (as measured by standard deviation) of the aggregate
portfolio. Includes both Active Risk and Benchmark Risk but note risk is not
additive (due to covariance) so Total Risk is not the sum of Active Risk and
Benchmark Risk. Also note, when cross-border assets are held, Total Risk also
includes the risk associated with the currency overlay (hedge) to the portfolio.
See Active Risk, Benchmark Risk.

Tracking Error: Standard Deviation of a portfolio return away from its
specified Benchmark - also known as Active Risk. See Active Risk.

Tracking Error Minimization: Technique that places the desire of the
investor to minimize the volatility of the recommended portfolio relative to
that of a specified Benchmark. Investors specify the degree of tolerance they
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are prepared to deviate away from the Benchmark via the tradeoff between
their target Active Return (alpha) and their tolerance boundary - tracking
error. See Active Risk, Active Return.

Traditional Finance Theory: Body of thought premised on the belief in
Strong EMH, Gaussian Form and the Random Walk hypothesis.

Treynor Ratio: Resembles the Sharpe Ratio however uses Beta rather than
standard deviation as a measure of risk in the denominator. See Sharpe
Ratio.

E(r) —re

Treynor Ratio =
Br

where

E(r;) = expected asset (or portfolio) return;
rf = risk free return; and
Br = Beta of asset returns relative to some specified benchmark.

Trinomial Method: Numerical time-step technique for option pricing.
Relies upon simulated expansion over specified interval where the price of
the underlying asset is assumed to move in a probabilistic determined fashion
either upward, sideways or downward. See Binomial Method.

Valuation Strategy — Simple P/E Relative: An equity strategy that com-
pares present P/E relative to its long-run average. If present P/E exceeds its
long-run average then equity asset is deemed “expensive” (with the converse
applying if the present P/E is below its long-run average).

settif(3) = ;)
E t L]i Long-run Avg.

Simple P/E Relative = P
Buy if <E>

E Long-run Avg.

Valuation Strategy — Extreme P/E Relative: An equity strategy that com-
pares present P/E relative to its deviation adjusted long-run average. If present
P/E exceeds its deviation adjusted long-run average then equity asset is
deemed “expensive” (with the converse applying if the present P/E is below
its long-run average). See Valuation Strategy — Simple P/E Relative.

Sell if (£> > <£> + 1(stdev)
E t E Long-run Avg.

Buy if <£> <<B) — 1(stdev)
E t E Long-run Avg.

Extreme P/E Relative =
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Valuation Strategy — Simple Earnings Yield Relative: An “equity versus
bond” strategy that compares bond yields relative to equity yields. If present
earnings yield on equities exceeds that of bonds then bonds are deemed
“expensive” (with the converse applying if the yield on bonds exceeds that
of equities). Note that since equities traditionally require a higher yield (in
accordance with the equity risk premium) then it is necessary to compare
earnings yield relativities in the present period versus their long-term average
to take into account the variant risk premia across assets.

Simple Earnings Yield Relative =
Bond Yield
>
Earings Yield /;
Bond Yield
Earings Yield Long-run Avg.

Bond Yield
Earings Yield

Equities “Expensive” if < )
Long-run Avg.
Bond Yield

Earings Yield)t = (

Equities “Cheap” if (

Valuation Strategy — Extreme Earnings Yield Relative: An “equity versus
bond” strategy that compares bond yields relative to equity yields but now
only records “buy” or “sell” signals for values in excess of +1 standard devi-
ations from the long-term mean. If present earnings yield on equities exceeds
that of bonds by more than 1 standard deviation from the long-run aver-
age then bonds are deemed “expensive” (with the converse applying if the
yield on bonds exceeds that of equities by more than one standard deviation
from the long-run average). See Valuation Strategy — Simple Earnings Yield
Relative.

Bond Yield

Equities “Expensive” if (m)t

>
Simple Earnings L
Yield Relative

Bond Yield
Earings Yield /1 ;g run Avg.

+ 1 (stdev)

Bond Yield

Equities “Cheap” if <Earingm> .

Bond Yield
<=/
Earings Yield /1 ;g run Avg.

— 1 (stdev)

Valuation Strategy - 2-Stage DDM: An equity strategy that values an
asset on the basis of the expected stream of its future dividends. The “1st
stage” takes recent dividend growth (e.g., as observed by the three monthly
rate of change in dividend yields) and extrapolates this forward for a finite
time period (e.g., five years). The “2nd stage” takes a conservative long-
term growth assumption (e.g., 1 percent dividend growth) and extrapolates



266 Appendix 1

this over an additional (long) horizon (e.g., 15 years). This future stream of
dividends is then discounted to present value. To take into consideration the
impact that structural shifts — such as alterations in corporate tax treatment —
it is useful to compare each discounted dividend value at time ¢ vis-a-vis a
rolling average (e.g., three years).

Equities “Expensive” if PV (Dividend Stream),

< PV (Dividend Stream), ... xo.

Equities “Cheap” if PV (Dividend Stream),
> PV (Dividend Stream)

2 Stage DDM =

3 year Avg.

VaR: Value at Risk. Gaussian-based measure of risk based upon probability
(assuming a normal distribution) of portfolio exhibiting a specified value.

VaR = no Wdt"?,

where

n = number of standard deviations;
o = standard deviation of portfolio;
W = present value of portfolio; and
dt = year fraction.

Variance: The Volatility of an asset. See Volatility.

Volatility: The square of the standard deviation (Risk) of asset returns.
Generally denoted by the square of the Greek letter 2. See Standard
Deviation.

Volatility = 02 = M
n-1 '

where

r; = asset return;
r = mean asset return; and
n = number of observations.
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An OLG Form Evolutionary Model
of the Marketplace

As stated in Chapter 5, when attempting to formalize a molecular-like
building block process toward financial information using infinite horizon/
finite agent techniques we soon encounter a major problem. Why? Simply
by doing so, we are essentially saying that the price of assets has the potential
to depart from “fundamental” value — otherwise intuitively, there would be
little market for the investment research output from the analyst community.
Tirole (1982) illustrated that under such conditions — even though they may
be realistic — the general equilibrium conditions for infinite horizon/finite
agent models will be violated.!
We thus faced two alternatives:

1 build a comprehensive information production/consumption model for
our evolutionary marketplace which has a finite number of infin-
itely lived investing agents but excludes informationally imperfect
asset prices explicitly from the general equilibrium conditions (rather,
the general equilibrium conditions apply only to that segment of
the economy responsible for the production and consumption of
information and not to the factors underlying the speculative assets
themselves); or

2 build an overlapping generations (OLG) model of finite lived investing
agents but also include under the one all-encompassing general equi-
librium “umbrella” the production and consumption of information/
financial assets/goods and services.

In Chapter 5 we chose to illustrate the former, in this Appendix we choose
to illustrate the latter.

1 For the mathematically minded, such a violation arises simply because the “departure
from fair value” assumption implies a failure to satisfy the transversality conditions of
the general equilibrium solution within this particular framework — see Chiang (1992)
for an exposition of these.

267
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A2.1 An introduction to our OLG framework

Our model’s foundations follow closely that of Blanchard and Fischer’s
(1993) interpretation of the model presented by Diamond (1965) who was in
fact, building upon earlier work by Samuelson (1958). We will omit certain
obvious and tautological elements of this model so that we can focus purely
on what is necessary to illustrate an intertemporal framework of information
consumption and production — which also allows for the presence of finan-
cial “bubbles” within its all-encompassing framework. For detailed aspects of
the model that are too extensive to be presented here, readers are referred to
Blanchard and Fischer (1993).

To begin with, let us assume the marketplace is composed of just individuals
and firms. Individuals are assumed to live for two periods — “young” and
“old.” A “young” individual born at time t consumes C;j; in period t and
Cyt4+1 in period t + 1 — when they are “old.” Their utility function can thus
be specified

U(Ci) + (1 —B)'U(Cs11), whereB>0, U'()>0, U'()<0. (A2.1)

We assume individuals work only in the first period of their life, supplying
inelastically one unit of labor and earning a real wage of w;. They consume
part of this income and save the rest for retirement consumption. Part of this
consumption represents standard goods and services, part of it represents
financial information.?

The saving of the young in period ¢ generates the capital stock that is used
to produce this output in period t+1 (in combination with the labor supplied
by the young generation at period t + 1). Also, it is important to note that
embodied in the production function is a relative share of capital and labor
that represents the financial analyst “community.”

The number of individuals born at time ¢t and working in period t is Z;.
The population grows at rate y so that Z; = Zy(1 + p)'. It is assumed firms
act under perfect competition conditions and face constant returns techno-
logy for their production function Y = F(K, Z).> Given the presence of perfect
competition, each firm takes the wage rate (w;) and the price of capital (r;)
as given.

2 For a detailed exposition of the cost/benefit conditions in the purchase of informa-
tion, refer to Hirshleifer and Riley (1992) Chapter 7.

3 We also assume F() is a net production function with depreciation already accounted
for. Further, we assume F() is strictly concave and satisfies what are known as the
“Inada” conditions — F(0) = 0, F'(0) = oo and F'(00) = 0.
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A2.2 Equilibrium for the consumer

An individual born at time ¢ thus has a maximization problem

Max U(Cy) + (1 —B)1U(Cap), (A2.2)
Subjectto Ci +S: =wy,

and
Carp1 = (1 +1141) O
This implies a first order maximization condition of
U'(Ci) = (1 =B) (1 +1:.)U' (Car41) = 0. (A2.3)
Taking into consideration Equation (A2.1), this implies a savings function
O =W, 1141) O<oy <1, @, <>0, (A2.4)

where
oy is the savings with respect to wages; and
o, is the savings with respect to interest rates.
It is straightforward that an increase in wages results in increased savings.
That said, should interest rates increase there is both an incentive to:

1 consume more in the second period (and thereby save more in the first
period) as it decreases the discount rate on future consumption; but also

2 to save less in both periods as a higher return on savings in both periods
raises the overall incentive to consume more.

This is known as the “income” versus “substitution” effect on savings from a
change in interest rates — hence the ambiguity in sign in the side condition to
Equation (A2.4). Ultimately this ambiguity will be resolved by the elasticity
of “between period consumption.” An elasticity of substitution greater than
one results in the substitution effect dominating the income effect and first
period saving rising in response to an increase in interest rates. The converse
applies for an elasticity of substitution less than one.

A2.3 Equilibrium for the producer

For equilibrium in the production side of the economy (which includes the
production of financial information) quite simply the demand for goods must
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equate to the supply of goods (or equivalently, investment must equate to
savings). This is represented as follows

Rt+1 - Kt =Zo(Wt, I'ty1) — Kt; (A2.5)

where K is the capital stock, so the LHS of Equation (A2.5) effectively
represents net investment while the RHS represents net saving (the first term
represents the saving by the young, the second term represents the dissaving
by the old).

Eliminating K; from both sides of Equation (A2.5) and dividing by Z, gives
the following equilibrium condition for producers

(14 P)KLes1 = 6(W, Tt41), (A2.6)
where KL, is the firm’s capital to labor ratio.

A2.4 Factor market equilibrium

Assuming firms act competitively and hire labor and employ capital in their
attempts to meet the equilibrium condition espoused in Equation (A2.6),
they do so up until a point where the marginal product of labor equates to
the prevailing wage rate (w;) and acquire capital up until a point where the
marginal product of that capital equates to the interest rate

f(KLt) - KLtf,(RLt) =W (A2.7)
and
f'(KLy) = 1. (A2.8)

Where, as stated earlier, we assume that labor is supplied inelastically and the
capital available in period ¢ is predetermined by the saving decision made
by the “young” in period t — 1. Factor market equilibrium therefore arises
when these predetermined labor supply and capital supply conditions are
met by identical demand conditions by producers at each and every moment
in time — which leads us nicely into the general equilibrium conditions of
the model.

A2.5 General equilibrium

We now have set up a system of equations where general equilibrium
revolves around the intertemporal decision of saving and investment by our
incumbent population. The correct decision here will not only maximize
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consumption (which includes the maximization of consumption of finan-
cial information) for these individuals but also clears the labor market and
the goods market. Combining our conditions for factor market equilibrium —
Equations (A2.7) and (A2.8) — with the equilibrium condition decision of the
producer — Equation (A2.6) — generates the following dynamic path for the
capital stock

_ WKL), r(KLer))] _ olf (KLy) — KLef'(KLo), ' (KLe11)]

KL . - A2.9
! 14y 1+y (A2.9)

Taking the derivative of KL, with respect to f(LtH (which is the crucial decision
that will ultimately determine equilibrium) gives

dKL¢sy _ —@, (KL)KLf"(KLy)
dKL; 1+p-— ﬂr(KLHl)f”(KLtH)

(A2.10)

But does our general equilibrium “solution” Equation (A2.10) necessarily
represent a steady-state equilibrium? To determine this, we use Figure A2.1.

The 45° ray from the origin in Figure A2.1 effectively represents all
steady-states at which KL,,; = KL,. Subsequently, for Equation (A2.10) to
represent a steady-state equilibrium in our model of - among other things —
intertemporal information consumption and production, the consumption
decision of our finite-lived (young to old) population must be such that
the intertemporal path of savings - as represented in Equation (A2.10) -
will effectively cross this 45° line. By way of example, we illustrate two

KL1‘+1

Path 1

Path 2

450\\\

KL,

Figure A2.1 Steady-state equilibrium for intertemporal saving/investment
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such paths in Figure A2.1 — Path 1 illustrates a steady-state equilibrium
point G, Path 2 implies no steady-state capital stock exists for the asso-
ciated values attached to the consumption/saving decision. In short, our
model as presently specified does not guarantee the existence of a steady-state
equilibrium, rather it only specifies the criteria necessary for a steady-state
equilibrium to exist. Subsequently, it is the relative orders of magnitude
attached to the consumption/savings decisions of our two-stage “young to
old” finite population that ultimately determines whether a steady-state
equilibrium is actually achieved.*

A2.6 Introducing money and prices

So far our model has relied upon a system of barter for exchange. What
happens if we introduce money (and by default, prices) to facilitate intertem-
poral consumption smoothing? To illustrate this, we restate our consumers
maximization condition

Max  U(Cyt, Cary1), (A2.11)

but now add the ancillary conditions

Pi(1—Cy) =P, (A2.12)
and
Pr1Copeq = PY, (A2.13)

where P{ is the individual’s demand for money.
Subsequently, the first order maximization condition for solving our
intertemporal consumption problem is now as follows

—Ui(Cyt, Cor1) n Uz(Cit, Cory1)
Py Piiy

0. (A2.14)

This implies a demand/supply function for money of

p P
4=/E< ‘ ) (A2.15)
Py Pryq

4 Likewise, the stability of this equilibrium is only guaranteed when such decisions
result in

—2w KL*f" (KL*)

1+ — o, f"(KL¥)

where KL* represents the steady-state capital to labor ratio.
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where the LHS of Equation (A2.15) represents the supply of money while the
RHS of Equation (A2.15) represents money demand. In expanding upon the
money demand determinants, Z£(.) represents the savings function (hope-
fully consistent with a steady-state equilibrium in the real economy as
represented by point G in Figure A2.1) and P;/P;;, is the rate of return on
money (which happens to be the inverse of the interest rate since by holding
money you are no longer saving). Subsequently, we define the inverse of the
interest rate (g) as the opportunity cost of holding money (or, from another
perspective “the rate of return” on money)

1 P,

8 N T P

(A2.16)

To equate the monetary sector of our model we must therefore equate
intertemporal money supply (which for convenience we will denote by D)
with intertemporal money demand. Assuming the “young” buy money in
accordance with Equation (A2.15), this implies an equilibrium condition of

A +9)'P =D. (A2.17)

Thus combining our equilibrium money supply/money demand condition —
Equation (A2.17) — with the relative price condition — Equation (A2.15) —and
the opportunity cost of holding money under the real economy equilibrium —
Equation (A2.16) - gives the following solution for the monetary sector of
our model

A +g)

1+49)7'A+p) = ——=—.
A+ A +y) 01T gm0

(A2.18)

This implies the inverse of the interest rate r:(g) must equal the growth of the
population, y. In short, prices must decrease at a rate such that real money
supply grows at the same rate as money demand - which, in turn, is growing
at the rate of population growth, y. It is only then that the monetary sec-
tor of our model of intertemporal information consumption and production
is equilibrated.

As was the case with the barter-based system, these equilibrium conditions
for money supply equating to money demand (as dictated by the relative price
levels between the two periods within our model) do not necessarily imply
an equilibrium in the real economy. It is only when there is an alignment
between the savings function £(.) — representing a real economy equilibrium
(as consistent with point G in Figure A2.1) — and interest rates being at a level
such that real money demand equates to real money supply, that the full gen-
eral equilibrium conditions of our monetized OLG model of intertemporal
information consumption/production are satisfied. Which ultimately brings
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us to the issue of how expectations are actually formed. Does the inform-
ational component of intertemporal consumption/production model have
any impact in forcing an equilibrating solution?

A2.7 Adding analyst driven expectations

Assuming, as stated earlier, information production represents a share of
output within our model and that — at least as a starting point assumption —
the general equilibrium conditions are initially satisfied, the next question
to ask is what are the ramifications of this information production in either
maintaining this equilibrium solution or alternately, forcing the system away
from equilibrium?

To start with, let us simplify matters by using y: to denote that set of
conditions where general equilibrium under a monetized OLG model of
intertemporal information consumption/production are initially met. This
includes intertemporal saving at a level consistent with equilibrium in the
real economy by clearing factor markets and which equates real money sup-
ply to real money demand. Subsequently, we can conveniently summarize
the expectational difference equation as

Yt = AEX(Vi|t) + c(en)y, (A2.19)

where Ex(y;11|t) denotes the expectation of y;,; held at time ¢ and (er); rep-
resents an “error” term in the sense that it can dictate whether prices depart
from their fundamental value.

It is in the formation of these expectations about this “error” term that
the analysts role is crucial. To formalize this, we state expectations are
conditioned upon the information-set provided by analysts

EX(Ver1lt) = EX(Vera|Tp), (A2.20)
where
T[ = {}/t—i; ertfi,/Ht—i/ i=0,...,00}.

Conveniently, as was highlighted with our interdependence between
information assumption outlined in Chapter 4, the information-set contains
current and lagged variables of both y and (er) (past and present expectations
and their associated error terms). Also, importantly, the vector 'H is identified
in Equation (A2.20). This represents analyst advice regarding both y and (er).

By endogenizing analyst advice into our equilibrium conditions for a
monetized OLG model of an economy containing explicit information
consumption and production as a fraction of its output, we can now rep-
resent the money supply/money demand function previously represented in
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Equation (A2.15) as

(A2.21)

bt EX(Pri1lle) — Py
|
where the LHS of Equation (A2.21) represents the real money supply that is
supplied inelastically by the old, while the RHS of Equation (A2.21) represents
real money demand by the young - taking into account analyst supplied
information acting as either an equilibrating force or alternately, driving our
system of equations away from equilibrium. Taking logs (as denoted by the
use of lowercase letters) yields

Py — pr = —[Ex(pryalle) — pel. (A2.22)

Reorganizing gives

pe = aBEX(Pesa[lp) + (1 — a)Py, (A2.23)
where
a= ﬁ

Note the similarities between Equations (A2.23) and (A2.19).% For our model,
it is the vector of analyst advice ('H) with regard to prices - including asset
prices — that will determine the intertemporal money supply conditions
within our system of equations and through this either equilibrate the model
or force a departure of prices from their fundamental value. Indeed, it is the
characteristics of the savings function 4(.) that determine both and a -
which happen to be derivative outcomes of this “analyst advice as to future
prices” function.

Analyst advice forcing a general equilibrium solution

So what are the conditions under which expectations are met and general
equilibrium obtained? If one assumes rational expectations, then the solution
procedure is relatively simple to ascertain for our expectation drive monetized
OLG model of intertemporal information consumption/production. Using
the process of iterated expectations, the solution for Equation (A2.19) under
rational expectations is

ye=c ) Exerilly), (A2.24)

i=0

5 Indeed, both equations bear a striking resemblance to the standard “evolution of
beliefs” framework as mapped out by Chamley (2004).
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which satisfies
lim a"  EX (Ve |le) = 0. (A2.25)

Mapping this to Equation (A2.23) implies the price level depends upon the
sequence of expected future money stocks — which since the error term con-
verges to zero, implies prices are set at their “fundamental” value. Thus, as
stated earlier, prices act as an intertemporal equilibrating force on our system
of equations through the intertemporal money supply conditions. Assum-
ing condition (A2.25) is met, general equilibrium is indeed achieved and our
system of equations is equilibrated.

Analyst advice promoting the appearance of speculative bubbles

But what happens when analyst projections as to the future fundamental-
driven direction of prices is less than perfect? This is where the infamous
case of speculative “bubbles” arise. In particular, the presence of speculative
bubbles is determined by the relativity of g with respect to y, and it is in the
determining of g in particular that analysts play a role.

Using y; to denote the “rational expectations” fundamental solution given
by Equation (A2.24) and £, to denote the bubble effect, we can express various
forms of analyst driven bubble solutions as

ve=yi +L. (A2.26)
For example, the case of an ever-expanding bubble

L, =toa" for arbitrary ko, (A2.27)

implies prices — including financial asset prices — are expanding exponentially
through time. However, since individuals are expecting this outcome (thanks
to the presence of analyst research) the model is still in “equilibrium” —it’s just
that asset prices are accelerating ad-infinitum thanks to analysts continuously
being too bullish. Under such circumstances, information consumers readily
believe the analysts and set their savings levels accordingly (and by default,
this affects price levels).

However, more realistically, we can also introduce the prospect of bursting
bubbles — with a given probability each period - by stating

L1 = (@Pr)7'L; +er,,; with probability Pr (A2.28)
and
Liy1 = er;  with probability 1 — Pr,

where Ex(er[+1|'l't) =0.



Appendix2 277

Again, the long term “zero error” arbitrage conditions will ultimately be
satisfied and our model is in a general form of intertemporal “equilibrium”
as analyst behavior not only drives the information-set that ensures the
bubble/bust result in asset prices but also by default equilibrates the system
as consumers are effectively informed of such probabilities and these out-
comes are built into their intertemporal decision-making. This illustrates the
self-fulfilling nature of the analyst provided price information advice in an
environ where decision-makers are ultimately informationally constrained.

Without doubt, the number of various permutations and combinations of
alternatives as to analyst behavior is near endless.® We could for example
explore the byte to meme, meme to theme, theme to overall market sen-
timent informational building consequences of analyst research output in
similar fashion as we have done in Chapter 5. But that is not the purpose of
the model presented here. Rather, what we have done in the model presen-
ted in this Appendix is to provide the reader with a framework that actually
endogenizes the provision of financial information within an intertemporal
model where all goods and services (along with financial “assets” in the form
of money) are considered. Future extensions to this model could consider
varying types of analyst behavior (and their associated calibrations) as we
detailed extensively in our alternate framework presented in Chapter 5. An
explicit stock market sector — along with bonds (to facilitate intertemporal
consumption smoothing) could also be appended to the model. As men-
tioned earlier, the scope for expansion is near endless. Still, we hope we have
provided the reader with some insight within this Appendix that an intertem-
poral model of information consumption and production can be developed
where analysts do on occasion get it both “right” and “wrong” and there are
economic (and associated financial market) consequences stemming from
both outcomes. We leave the extensions to this skeletal framework to the
labors of future researchers and wish them well in their endeavors.

6 For an outline of some of these permutations, refer to Azariadis (1993).



Appendix 3

Some Background on Evolutionary
Finance™ Ltd

Like any good scientist who feels the only way to prove the efficacy
of their new vaccine is to inject themselves with their own formula
(and to thereby expose themselves to the worst of all possible cir-
cumstances), we ourselves believe that the only way to prove the
efficacy of our revolutionary/evolutionary perspective as to the inform-
ational “building blocks” of asset prices is to put our exciting new
thought paradigm into action in the applied finance sphere. To do this,
we established our company - Evolutionary Finance Ltd - so that a
wider array of investors can benefit from our unique perspective upon
markets.

Founded at Cambridge in the UK, Evolutionary Finance Ltd is a special-
ist absolute return manager and boutique research firm specializing in the
implementation of our revolutionary Evolutionary Finance principles across
an array of absolute return mandates. Our investment philosophy is simple —
markets are in a constant state of evolution as market participants respond to
the unrelenting flow of information that besieges the market each and every
day. Using our unique “adaptively predatory” investment style, Evolution-
ary Finance Ltd develops an array of sophisticated evolutionary investment
strategies that are designed specifically to capitalize upon our structured
approach toward information and by doing so, capitalize upon the fallibilities
of others.

Using our patented software platform — Natural Selection™ — Evolutionary
Finance Ltd screens the market at the close of each business day look-
ing for telltale “memetic footprints” as to winning strategy theme form-
ation. Our unique structured information investment approach can then
tell us whether a particular investing thematic is in its early stages of
formation (our potential “longs”) or nearing full maturity — and is thus
vulnerable to thematic “strategy failure” (our potential “shorts”). We then
position ourselves accordingly to benefit from the “greater herd’s” investment
response.

Given the fact that our predatory strategy investment triggers are cal-
ibrated at the close of each business day, we have subsequently found
it convenient to establish our main office in the Pacific time-zone — so
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as to benefit from the main European and North American market clos-
ing. Doing so enables us to better manage risk when markets are at a
heightened state of turmoil. For further information on how to contact us
and for our latest investment performance results please visit our website at:
www.Evolutionary-Finance.co.uk.
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