Epreuve: Traitement du signal

Durée: 2h00min

PARTIE A: Traitement Analogique

Exercice I: 5pts

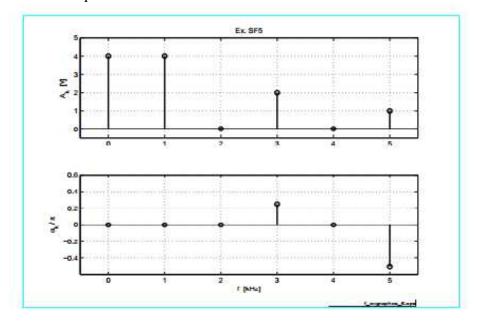
1. On considère les spectres unilatéraux d'un signal x(t) ci-dessous

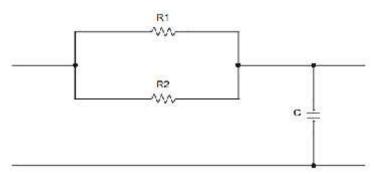
a. Donnez l'expression de x(t)

1pt

b. Calculer sa puissance et sa valeur efficace.

1pt



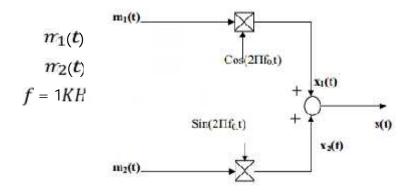

FIG. 1.7 - Exercice SF 5 (Relater source).

2. Calculer le produit de convolution f*g avec :

$$f(x) = \begin{cases} 1 & si - 1 & x & 3 \\ 0 & aileurs \end{cases} \text{ et } g(x) = \begin{cases} \frac{x}{2} & si & 0 \le x < 2 \\ 0 & aileurs \end{cases}$$
 3pts

Exercice II: 3pts

Soit le montage suivant :


1.) et sa transformée de Laplace de la tension d'entrée est $\mathbf{l}_e(P) = 1/P.\mathbf{1pt}$

- 2. Déduire la fonction de transfert H(jw) et le type de filtre.
- 3. Supposant que c'est un filtre passe-bas, de fréquence de coupure f_c =3.14kHz, déterminer dans ce cas le signal Vs(t) pour un signal d'entrée $V_e(t)$ =4+2sin(2 $\pi f_0 t$)+sin(2 $\pi f_1 t$). On donne : f_0 =1kHz et f_1 =5kHz.

PARTIE B: Traitement Analogique et Numérique du signal

Exercice I: 2pts

Le principe de la modulation d'amplitude BLU (Bande Latérale Unique) est illustré par la figure suivante :

1. Déterminer l'expression de $x_1(t)$ et de $x_2(t)$.

0.5pt

1pt

2. Déduire l'expression de *s(t)*.

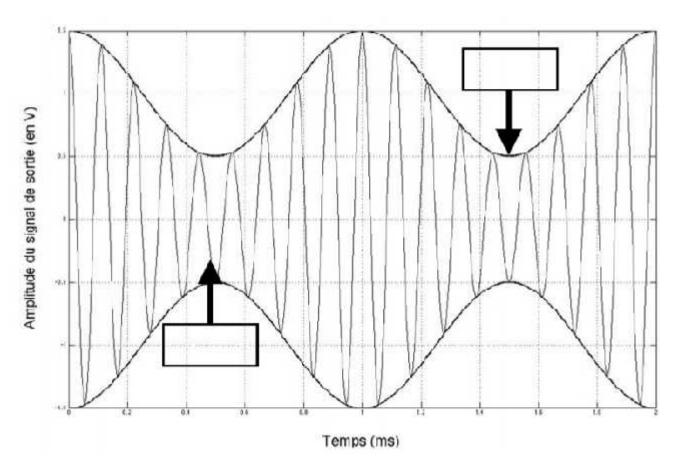
0.5pt

3. Calculer la transformée de Fourier de *S(t)*.

1pt

Exercice II: 4pts

Soit le filtre d'entrée x(n) et de sortie y(n) défini par l'équation récurrente suivante :


$$y(n) = x(n) - ax(n-1)$$
 (1)

- 1. Déterminer sa fonction de transfert H(z). 0.5pt
- 2. Déterminer la transformée en z de $\delta(n)$ et de $\delta(n-1)$. En déduire la réponse impulsionnelle du filtre.
- 3. Déterminer la transformée en z de la fonction échelon unité u(n), ainsi que son domaine d'existence. En déduire la réponse indicielle du filtre. 0.5pt
- 4. Le filtre défini par l'équation 1. Est-il un filtre RIF ou un filtre RII? Justifiez votre réponse. **0.5pt**
- 5. Le filtre défini par l'équation 1 est-il stable ? Justifiez votre réponse. **0.5pt**
- 6. Le filtre défini par l'équation 1 est-il causal ? Justifiez votre réponse. **0.5pt**

PARTIE C: Traitement du signal aleatoire

Exercice I: 6pts

La figure ci-dessous représente une simulation d'un signal modulé en amplitude avec porteuse

- 1. Indiquer sur la figure, et dans les cases prévues à cet effet, quelle est l'onde porteuse et quelle est l'onde modulante. **1pt**
- 2. Déterminer graphiquement la fréquence de l'onde porteuse f_p et la fréquence de l'onde modulante f_m .
- 3. Sachant que le taux de modulation est m = 50% et que l'amplitude de l'onde porteuse est $A_p = 1V$, déterminer l'amplitude du signal modulant A_m 1pt
- 4. France-Inter émet sur les grandes ondes (radio AM) à la fréquence $163kH_z$. Soit un signal modulé en amplitude crée avec une onde porteuse de fréquence $f_p = 163kH_z$. Et un signal de modulation sinusoïdal de fréquence $f_m = 3kH_z$.
 - a. Quelles sont les fréquences contenues dans le signal modulé? Sachant que la loi autorise une largeur de bande maximale de $9kH_Z$. Que peut-on en conclure sur la qualité de retransmission musicale en radio AM?
 - b. Sachant que la puissance totale de l'émetteur de France-Inter est $F_T = 2000 kw$ et que le taux de modulation est m = 75%, calculer les puissances fournies à une antenne (assimilée à une résistance R), respectivement par les bandes latérales F_B et par la porteuse F_D . Commenter les valeurs obtenues. 2pts